Development of an accurate method for advection problems with embedded moving-boundaries

Yunus Hassena,b Barry Korena,c

aCWI, Amsterdam
bFac. Aerospace Eng., TU Delft
cMath. Institute, Leiden University

Academy colloquium on IBMs
15 June 2009, Amsterdam
1. Introduction
2. Spatial discretization
3. Temporal discretization
4. Results
5. Conclusion
future: computation of fluid flows around complex moving bodies
future: computation of fluid flows around complex moving bodies

present: numerical analysis for model problems: development of a monotone, higher-order accurate and efficient method for convection, using a fixed-grid FVM
advection eqn: $c_t + (uc)_x = 0$, $u = \text{constant} > 0$

initial conditions:

$$c(x, 0) = \begin{cases}
0, & \text{if } x_1 \leq x \leq x_2 \\
1, & \text{elsewhere}
\end{cases}$$

with periodic boundary condition
advection eqn: \(c_t + (uc)_x = 0, \ u = \text{constant} > 0 \)

initial conditions:

\[
c(x, 0) = \begin{cases}
0, & \text{if } x_1 \leq x \leq x_2 \\
\frac{1}{2}(1 - \cos(2\pi x)), & \text{elsewhere}
\end{cases}
\]
domain of unit length, \(x \in [0, 1] \)
divided into \(N \) uniform cells: \(h = 1/N \)
cell-averaged discrete solution
domain of unit length, $x \in [0, 1]$

divided into N uniform cells: $h = 1/N$

cell-averaged discrete solution

semi-discrete equation:

$$h \frac{dc_i}{dt} + u \left(c_{i+1/2}(t) - c_{i-1/2}(t) \right) = 0$$
cell-face state approximation:

- first-order accurate upwind: \(c_{i+\frac{1}{2}} = c_i \)
cell-face state approximation:

- first-order accurate upwind: \(c_{i+\frac{1}{2}} = c_i \)
- high-order accurate scheme
 - unlimited \(\kappa \)-scheme, \(\kappa \in [-1, 1] \):
 \[
 c_{i+\frac{1}{2}} = c_i + \frac{1 + \kappa}{4} (c_{i+1} - c_i) + \frac{1 - \kappa}{4} (c_i - c_{i-1})
 \]
 - limited \(\kappa \)-scheme: \(c_{i+\frac{1}{2}} = c_i + \frac{1}{2} \phi(r_{i+\frac{1}{2}})(c_i - c_{i-1}) \)
 \[
 r_{i+\frac{1}{2}} = \frac{c_{i+1} - c_i}{c_i - c_{i-1}}
 \]
standard limiter

limiter for $\kappa = 1/3$

$$\phi(r) = \max(0, \min(2r, \min(\frac{1}{3} + \frac{2}{3}r, 2)))$$
standard FVM results

- no embedded boundary-conditions imposed yet: pure capturing
- $u = 1$, $x_1 = \frac{1}{3}$, $x_2 = \frac{2}{3}$, $T = 1$ (one full-period)
- very small time steps
- number of cells: $N = 20$ (top) and $N = 40$ (bottom)
exact discrete (−), first-order upwind (−), unlimited $\kappa = \frac{1}{3}$ (−), limited $\kappa = \frac{1}{3}$ (−)
embedded-boundary conditions:

- discontinuities in initial solutions model infinitely thin bodies going with flow
embedded-boundary conditions:

- discontinuities in initial solutions model infinitely thin bodies going with flow
- solution values on left and right sides of EB: c_{EB}^l and c_{EB}^r
- user-specified values
- embedded in fixed-grid fluxes
EB in cell i at time t^n and affected cell-face states

\[
\begin{align*}
 c_{i-1/2}^l &
 \\
 c_{i+1/2}^r &
 \\
 c_{i+3/2}^l &
\end{align*}
\]

EB-position relative to $x_{i-1/2}$ is βh: $\beta = \frac{x_{EB} - x_{i-1/2}}{\frac{1}{2} h}$, $\beta \in [0, 1]$
EB in cell i at time t^n and affected cell-face states

\mathbf{c}^E_B	\mathbf{c}^R_B
$c_{i-\frac{1}{2}}$, $c_{i+\frac{1}{2}}$, $c_{i+\frac{3}{2}}$

EB-position relative to $x_{i-\frac{1}{2}}$ is βh: $\beta = \frac{x_{EB} - x_{i-\frac{1}{2}}}{h}$, $\beta \in [0, 1]$

no information flow across EB

cell-face states affected in case of 3-point upwind-biased interpolation: $c_{i-\frac{1}{2}}(\mathbf{c}^E_B, \cdot)$, $c_{i+\frac{1}{2}}(\mathbf{c}^E_B, \cdot)$, $c_{i+\frac{3}{2}}(\mathbf{c}^E_B, \cdot)$
unlimited, higher-order, EB-affected, cell-face states

\[c_{i-\frac{1}{2}} = c_{i-1} + \frac{1}{1+2\beta} \left(\frac{1+\kappa_{i-\frac{1}{2}}}{2} (c_{EB}^l - c_{i-1}) + \frac{1-\kappa_{i-\frac{1}{2}}}{4} (c_{i-1} - c_{i-2}) \right) \]

\[c_{i+\frac{1}{2}} = c_{EB}^r + \frac{2-2\beta}{3-2\beta} (c_{i+1} - c_{EB}^r) \]

\[c_{i+\frac{3}{2}} = c_{i+1} + \frac{1}{4} \left(\frac{1+\kappa_{i+\frac{3}{2}}}{2} (c_{i+2} - c_{i+1}) + \frac{1-\kappa_{i+\frac{3}{2}}}{2} (c_{i+1} - c_{EB}^r) \right) \]
unlimited, higher-order, EB-affected, cell-face states

\[\begin{align*}
 c_{i - \frac{1}{2}} &= c_{i-1} + \frac{1}{1+2\beta} \left(\frac{1 + \kappa_{i-\frac{1}{2}}}{2} (c_{EB}^l - c_{i-1}) + \frac{1 - \kappa_{i-\frac{1}{2}}}{4} (c_{i-1} - c_{i-2}) \right) \\
 c_{i + \frac{1}{2}} &= c_{EB}^r + \frac{2 - 2\beta}{3 - 2\beta} (c_{i+1} - c_{EB}^r) \\
 c_{i + \frac{3}{2}} &= c_{i+1} + \frac{1 + \kappa_{i+\frac{3}{2}}}{4} (c_{i+2} - c_{i+1}) + \frac{1 - \kappa_{i+\frac{3}{2}}}{2} (c_{i+1} - c_{EB}^r) \\
\end{align*} \]

\(\kappa_{i - \frac{1}{2}} \) and \(\kappa_{i + \frac{3}{2}} \) to be optimised for net fluxes

away from EB, standard \(\kappa = \frac{1}{3} \) scheme is used
optimum κ values

$$\kappa_{i-\frac{1}{2}} = \frac{7 - 6\beta}{9 + 6\beta}$$
optimum κ values

\[
\kappa_{i-\frac{1}{2}} = \frac{7 - 6\beta}{9 + 6\beta}
\]

\[
\kappa_{i+\frac{3}{2}} = \frac{7 - 6\beta}{15 - 6\beta}
\]
optimum κ values

$$\kappa_{i-\frac{1}{2}} = \frac{7-6\beta}{9+6\beta}$$

$$\kappa_{i+\frac{3}{2}} = \frac{7-6\beta}{15-6\beta}$$

$\beta = \frac{1}{2}$: $\kappa_{i-\frac{1}{2}} = \kappa_{i+\frac{3}{2}} = \frac{1}{3}$
limited EB-affected cell-face states

\[c_{i-\frac{1}{2}} = c_{i-1} + \frac{1}{2} \tilde{\phi}(\tilde{r}_{i-\frac{1}{2}})(c_{i-1} - c_{i-2}) \]

\[\tilde{\phi}(\tilde{r}_{i-\frac{1}{2}}) = \frac{1+6\beta}{9+6\beta} + \frac{8}{9+6\beta} \tilde{r}_{i-\frac{1}{2}} \]

\[\tilde{r}_{i-\frac{1}{2}} = \frac{2}{1+2\beta} \frac{c_{l} - c_{i-1}}{c_{i-1} - c_{i-2}} \]

\[c_{i+\frac{3}{2}} = c_{i+1} + \frac{1}{3-2\beta} \tilde{\phi}(\tilde{r}_{i+\frac{3}{2}})(c_{i+1} - c_{EB}') \]

\[\tilde{\phi}(\tilde{r}_{i+\frac{3}{2}}) = \frac{4}{15-6\beta} + \frac{11-6\beta}{15-6\beta} \tilde{r}_{i+\frac{3}{2}} \]

\[\tilde{r}_{i+\frac{3}{2}} = \frac{3-2\beta}{2} \frac{c_{i+2} - c_{i+1}}{c_{i+1} - c_{EB}'} \]
limited EB-affected cell-face states

\[c_{i-\frac{1}{2}} = c_{i-1} + \frac{1}{2} \phi(\tilde{r}_{i-\frac{1}{2}})(c_{i-1} - c_{i-2}) \]

\[\phi(\tilde{r}_{i-\frac{1}{2}}) = \frac{1+6\beta}{9+6\beta} + \frac{8}{9+6\beta} \tilde{r}_{i-\frac{1}{2}} \]

\[\tilde{r}_{i-\frac{1}{2}} = \frac{2}{1+2\beta} \frac{c_{EB}^l - c_{i-1}}{c_{i-1} - c_{i-2}} \]

\[c_{i+\frac{3}{2}} = c_{i+1} + \frac{1}{3-2\beta} \phi(\tilde{r}_{i+\frac{3}{2}})(c_{i+1} - c_{EB}^r) \]

\[\phi(\tilde{r}_{i+\frac{3}{2}}) = \frac{4}{15-6\beta} + \frac{11-6\beta}{15-6\beta} \tilde{r}_{i+\frac{3}{2}} \]

\[\tilde{r}_{i+\frac{3}{2}} = \frac{3-2\beta}{2} \frac{c_{i+2} - c_{i+1}}{c_{i+1} - c_{EB}^r} \]

imposing monotonicity requirements:

\[\frac{c_{i-\frac{1}{2}} - c_{i-\frac{3}{2}}}{c_{i-1} - c_{i-2}} \geq 0, \ldots \]

\[\frac{\phi(\tilde{r}_{i-\frac{1}{2}})}{\tilde{r}_{i-\frac{1}{2}}} \leq 1 + 2\beta \]

\[\frac{\phi(\tilde{r}_{i+\frac{3}{2}})}{\tilde{r}_{i+\frac{3}{2}}} \leq 2 \]
semi-discrete eqn: \[
\frac{dc_i}{dt} = -\frac{u}{h}(c_{i+\frac{1}{2}} - c_{i-\frac{1}{2}}) \equiv F(c)
\]
semi-discrete eqn: \[
\frac{dc_i}{dt} = -\frac{u}{h}(c_{i+\frac{1}{2}} - c_{i-\frac{1}{2}}) \equiv F(c)
\]

Forward Euler:
\[
c_{i}^{n+1} = c_{i}^{n} + \tau F(c^n)
\]
semi-discrete eqn: \[\frac{dc_i}{dt} = -\frac{u}{h}(c_{i+\frac{1}{2}} - c_{i-\frac{1}{2}}) \equiv F(c) \]

Forward Euler:

\[c_{i}^{n+1} = c_{i}^{n} + \tau F(c^n) \]

Modified Euler:

predict: \[\hat{c}_{i}^{n+1} = c_{i}^{n} + \tau F(c^n) \]

correct: \[c_{i}^{n+1} = c_{i}^{n} + \frac{\tau}{2} \left(F(c^n) + F(\hat{c}^{n+1}) \right) \]
Harten (1984) provided theorem that gives additional conditions necessary for convergence to monotone solutions.
Harten (1984) provided theorem that gives additional conditions necessary for convergence to monotone solutions.

Theorem (Harten’s)

Consistent scheme written in conservation form

\[c_{i}^{n+1} = c_{i}^{n} - D_{i-\frac{1}{2}}^{-} (c_{i}^{n} - c_{i-1}^{n}) + D_{i+\frac{1}{2}}^{+} (c_{i+1}^{n} - c_{i}^{n}) \]

is TVD if \(D_{i+\frac{1}{2}}^{\pm} \geq 0 \) and \(D_{i+\frac{1}{2}}^{-} + D_{i+\frac{1}{2}}^{+} \leq 1 \)
Harten (1984) provided theorem that gives additional conditions necessary for convergence to monotone solutions.

Theorem (Harten’s)

A consistent scheme written in conservation form

\[c_{i}^{n+1} = c_{i}^{n} - D_{i-\frac{1}{2}}^{-} (c_{i}^{n} - c_{i-1}^{n}) + D_{i+\frac{1}{2}}^{+} (c_{i+1}^{n} - c_{i}^{n}) \]

is TVD if \(D_{i+\frac{1}{2}}^{\pm} \geq 0 \) and \(D_{i+\frac{1}{2}}^{-} + D_{i+\frac{1}{2}}^{+} \leq 1 \)

- Above conditions define upper bounds for limiter functions.
- Monotonicity yields more stringent restrictions on time step than stability.
imposing Harten’s conditions yields \(\nu = \frac{u \tau}{h} \) is CFL number:

\[
0 \leq \phi(\tilde{r}_{i-\frac{1}{2}}) \leq \frac{2}{\nu} - 2
\]

\[
-1 \leq \phi(\tilde{r}_{i+\frac{3}{2}}) \leq \frac{3-2\beta}{\nu} - 1
\]

\[
4 - \frac{2}{\nu} \leq \frac{\phi(\tilde{r}_{i-\frac{1}{2}})}{\tilde{r}_{i-\frac{1}{2}}} \leq 1 + 2\beta
\]

\[
4 - \frac{2}{\nu} \leq \frac{\phi(\tilde{r}_{i+\frac{3}{2}})}{\tilde{r}_{i+\frac{3}{2}}} \leq 2
\]
imposing Harten’s conditions yields \(\nu = \frac{u \tau}{h} \) is CFL number:

\[
0 \leq \tilde{\phi}(\tilde{r}_{i-\frac{1}{2}}) \leq \frac{2}{\nu} - 2
\]

\[
-1 \leq \tilde{\phi}(\tilde{r}_{i+\frac{3}{2}}) \leq \frac{3 - 2\beta}{\nu} - 1
\]

\[
4 - \frac{2}{\nu} \leq \frac{\tilde{\phi}(\tilde{r}_{i+\frac{1}{2}})}{\tilde{r}_{i+\frac{1}{2}}} \leq 2
\]

- EB-sensitive, \(\nu \)-dependent bounds
- fully-bound monotonicity domain
simplified monotonicity domains

\[0 \leq \tilde{\phi}(\tilde{r}_{i-\frac{1}{2}}) \leq 2 \]

\[-1 \leq \tilde{\phi}(\tilde{r}_{i+\frac{3}{2}}) \leq 5 - 4\beta \]

\[0 \leq \frac{\tilde{\phi}(\tilde{r}_{i-\frac{1}{2}})}{\tilde{r}_{i-\frac{1}{2}}} \leq 1 + 2\beta \]

\[0 \leq \frac{\tilde{\phi}(\tilde{r}_{i+\frac{3}{2}})}{\tilde{r}_{i+\frac{3}{2}}} \leq 2 \]

- \(\nu \)-dependence avoided by taking stringent restriction on \(\nu \)
- monotonicity preserving schemes for \(\nu \leq \frac{1}{2} \)
Typical EB-sensitive limiters for the EB-affected fluxes, and their corresponding simplified monotonicity domains, for $\beta = \frac{1}{2}$
Flux integration techniques

set up: an EB crossing a cell interface
Flux integration techniques

\[f_{i-\frac{1}{2}}^{n} \quad f_{i+\frac{3}{2}}^{n} \]

flux variations
Flux integration techniques

\[f_{i+\frac{1}{2}}^{n+1} - f_{i+\frac{1}{2}}^n \]

flux variations: abrupt change in \(c_{i+\frac{1}{2}} \) at \(t^{n+\alpha} \)
Flux integration techniques

analytic integration: exact
 Flux integration techniques

numerical integration: Forward Euler
Flux integration techniques

numerical integration: Modified Euler
Adaptive Forward Euler: time-adapted $c_{i+\frac{1}{2}}$
Adaptive Forward Euler: time-adapted $c_{i+\frac{1}{2}}$
Adaptive Forward Euler: time-adapted $c_{i+\frac{1}{2}}$

\[\alpha = \frac{x_{i+\frac{1}{2}} + \epsilon - x_E^p}{u\tau}, \quad \alpha \in (0, 1) \]
Adaptive Forward Euler: time-adapted $c_{i+\frac{1}{2}}$

\[\alpha = \frac{x_{i+\frac{1}{2}} + \epsilon - x_{EB}^n}{u\tau}, \quad \alpha \in (0, 1) \]

\[c_{i+\frac{1}{2}}^{n+1} := \alpha c_{i+\frac{1}{2}}^n + (1 - \alpha)c_{i+\frac{1}{2}}^{n+\alpha} \]
Adaptive Forward Euler: time-adapted $c_{i+\frac{1}{2}}$

\[\alpha = \frac{x_{i+\frac{1}{2}} + \epsilon - x_{EB}^n}{u\tau}, \quad \alpha \in (0, 1) \]

\[c_{i+\frac{1}{2}}^n := \alpha c_{i+\frac{1}{2}}^{n} + (1 - \alpha) c_{i+\frac{1}{2}}^{n+\alpha} \]

proceed time stepping with τ
Standard Forward Euler: no time-splitting for discontinuous flux
Adaptive Forward Euler: with *time-splitting* for discontinuous flux
Adaptive Modified Euler: time-adapted predicted/corrected cell-face states

\[t^{n+1} \]

\[X \]

\[n \]

\[n+1 \]
Adaptive Modified Euler: time-adapted predicted/corrected cell-face states

compute α^-
Adaptive Modified Euler: time-adapted predicted/corrected cell-face states

compute α^-, predict solutions and capture $\hat{c}_{i+\frac{1}{2}}^{n+\alpha^-}$
Adaptive Modified Euler: time-adapted predicted/corrected cell-face states

- compute α^-, predict solutions and capture $\hat{c}_{i+\frac{1}{2}}^{n+\alpha^-}$
- compute α^+
Adaptive Modified Euler: time-adapted predicted/corrected cell-face states

- compute α^-, predict solutions and capture $\hat{c}^{n+\alpha^-}_{i+\frac{1}{2}}$
- compute α^+, correct solutions and capture $c^{n+\alpha^+}_{i+\frac{1}{2}}$
Adaptive Modified Euler: time-adapted predicted/corrected cell-face states

- compute α^-, predict solutions and capture $\hat{c}_{i+\frac{1}{2}}^{n+\alpha^-}$
- compute α^+, correct solutions and capture $c_{i+\frac{1}{2}}^{n+\alpha^+}$
- move EB to its ‘final destination’
Adaptive Modified Euler: time-adapted predicted/corrected cell-face states

- Compute α^-, predict solutions and capture $\hat{c}^{n+\alpha^-}_{i+\frac{1}{2}}$
- Compute α^+, correct solutions and capture $c^{n+\alpha^+}_{i+\frac{1}{2}}$
- Move EB to its ‘final destination’, predict solutions and capture $\hat{c}^{n+1}_{i+\frac{1}{2}}$
Standard Modified Euler: no time-splitting for discontinuous flux
Adaptive Modified Euler: with time-splitting for discontinuous flux
with $\nu \sim O(10^{-3})$

exact discrete ($\bigcirc \cdots$), unlimited high-order upwind-biased ($\blacksquare -$), limited ditto ($\ast -$)
with $\nu \sim \mathcal{O}(10^{-3})$

exact discrete (○ ⋯), unlimited high-order upwind-biased (□ −), limited ditto (∗ −)
Adaptive Forward Euler: $\nu = 0.15, T = 1$
Adaptive Modified Euler: $\nu = 0.75$, $T = 1$
Adaptive Modified Euler: $\nu = 0.75, \ T = 5$
Moving boundaries accurately and efficiently embedded in uniform fixed-grid

- Tailor-made limiters derived for EB-affected fluxes
- Monotone, high-order accurate (in space and time) solution achieved
- Remarkably accurate results without much computational overhead
References:

Y.H., B. Koren, A new immersed-boundary method for advection problems with moving boundaries, Submitted to JCAM

Y.H., B. Koren, Local time-adaptivity and the Modified Euler method for fluxes with sharp discontinuities, To appear