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Geometry and topology of escape. I. Epistrophes
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We consider a dynamical system given by an area-preserving map on a two-dimensional phase plane
and consider a one-dimensional line of initial conditions within this plane. We record the number of
iterates it takes a trajectory to escape from a bounded region of the plane as a function along the line
of initial conditions, forming an ‘‘escape-time plot.’’ For a chaotic system, this plot is in general not
a smooth function, but rather has many singularities at which the escape time is infinite; these
singularities form a complicated fractal set. In this article we prove the existence of regular repeated
sequences, called ‘‘epistrophes,’’ which occur at all levels of resolution within the escape-time plot.
~The word ‘‘epistrophe’’ comes from rhetoric and means ‘‘a repeated ending following a variable
beginning.’’! The epistrophes give the escape-time plot a certain self-similarity, called ‘‘epistrophic’’
self-similarity, which need not imply either strict or asymptotic self-similarity. ©2003 American
Institute of Physics.@DOI: 10.1063/1.1598311#
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Chaotic transport, and the escape of trajectories from
defined regions of phase space, has been an importan
topic in dynamics for many years, because it describes
phenomena that occur in many branches of physics. For
example, some meteorites that fell on Antarctica are be-
lieved to have come from Mars; how they escaped from
Mars’ gravitational field is a problem in the theory of
chaotic transport.1 At a smaller scale, one of the impor-
tant topics in nanophysics is ballistic transport of elec-
trons through a small junction: electrons enter a junction
from one lead, bounce around within the junction follow-
ing either regular or chaotic paths, and eventually find
their way to an exit lead.2 A closely related problem is
chaotic propagation of light rays in a distorted cylindrical
glass bead.3 At the molecular level, we may think about
the breakup of a temporarily bound complex, such as a
He atom weakly bound to an I2 molecule.4–7 At the
atomic level, the ionization of an excited hydrogen atom
in applied electric and magnetic fields is an ideal candi-
date for the laboratory study of chaotic transport.8–14 We
can learn many of the properties of chaotic transport by
studying area-preserving maps of the plane. We examine
the time required to escape from a specified region of the
plane, plotted as a function along a given line of initial
conditions. Within this escape-time plot, we study regular
sequences of escaping intervals, which we call ‘‘epistro
phes.’’

I. INTRODUCTION

We are motivated by the chaotic ionization of a hydr
gen atom placed in strong parallel electric and magn
fields. The dynamics of the hydrogenic electron can be m

a!Electronic mail: kevinm@physics.wm.edu
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eled classically by an area-preserving map on a tw
dimensional phase plane. This map exhibits a prominent
moclinic tangle ~see the following!, which organizes the
dynamics, leading to phase space transport and eventu
escape. The mechanism of escape via a tangle is a com
model for many classical systems. In this paper, we cons
the general problem of escape for an arbitrary map poss
ing a homoclinic tangle exhibiting the basic structure sho
in Fig. 1.

The map in Fig. 1 has an unstable fixed point~X point!
zX , with a pair of stable and unstable manifolds attached
it. These manifolds are invariant curves containing all poi
that asymptote tozX under forward and backward iterate
respectively.15,16 The curves intersect transversely at t
point P0 . The ‘‘complex’’ is the region bounded by the seg
ments of the stable and unstable manifolds joiningzX to P0 ;
escape is defined as mapping out of the complex. As
plained by Poincare´, the transverse intersectionP0 produces
a homoclinic tangle. Between successive intersection po
Pn andQn , the manifolds bound lobes denotedEn andCn in
Fig. 1. As these lobes are mapped forward or backward, t
widths are compressed and their lengths are stretched;
become long and thin and develop intricate twisted shap
The resulting complex structure of the intersecting stable
unstable manifolds is called a homoclinic tangle.

An important aspect of any classical decay problem
the distribution of initial points in phase space. When mo
eling the breakup of molecular collision complexes, for e
ample, one normally assumes that the complex is more
less in thermal equilibrium. A microcanonical distribution
initial probability might be used within the collision com
plex, with equal probabilities in equal areas, or perhaps so
other smooth distribution. However, in most experiments
excited atoms in strong fields, the initial distribution is qu
different. The electron attains a high energy by single-pho
excitation from a localized strongly bound initial state.17–22
© 2003 American Institute of Physics
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The trajectories therefore start close to the nucleus and
out in all directions. This initial distribution is well modele
by assuming that all electrons begin exactly at the nucle
with constant energy, and with a smooth distribution of o
going directions.23–25 In the phase plane, this yields a distr
bution of initial states along aline of initial conditions. Thus,
we assume that the initial distribution of states in pha
space lies along some curveL0 , the details of which depend
on the problem at hand.~See Fig. 1.! Along this curve there
is some initial density of points; for hydrogen this dens
represents the initial angular distribution of outgoi
electrons.26,56

We plot the number of iteratesni needed to escape as
function along the line of initial conditionsL0 , forming an
escape-time plot, as shown in Fig. 2. Each line segment
Fig. 2 represents an interval, orescape segment, of L0 , in
which all points escape the complex at the same iterate.
escape-time plot is clearly a very complicated function w
‘‘fractal’’ properties; this fractal structure is created by th
repeated intersections of the stable manifold with the line
initial conditions. Our objective is to describe certain regu
structures within this plot.

Figure 2 contains many prominent sequences of esc
segments, several of which are indicated by bold arrows.
call each such sequence anepistrophe. Epistrophes have sev
eral important properties.~1! Beginning at some initial iter-
ate, each epistrophe contains one escape segment at
subsequent iterate.~2! Each epistrophe converges to som
point onL0 . ~3! Within a given epistrophe, the lengths of th
escape segments decrease geometrically~in the limit ni

→`) with the ratio of successive lengths converging to
Liapunov factor ~i.e., the largest eigenvalue! a of the X
point. This is true regardless of which epistrophe we analy

The epistrophes form hierarchical sequences—we se
Fig. 2 that the end points of each escape segment serve a

FIG. 1. A phase space portrait is shown for a map possessing a s
homoclinic tangle.@The map is defined by Eqs.~A1!–~A3! with t51.5, f
50.25, andm50.57.] TheX point zX has a stable manifoldS and unstable
manifoldU which cross repeatedly to form the tangle. The primary inters
tion point P0 defines the complex, the northern and southern boundarie
which are the segments ofS and U joining P0 to zX . Orbits escape the
complex by mapping fromE21 into E0 and then move away through suc
cessive iterates:E1 ,E2 ,E3 , . . . . Orbits are captured by mapping fromC0

into C1 . The line of initial conditionsL0 coincides withq50.
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limit points for epistrophes beginning at higher iterate nu
ber. For example, consider epistrophea, which begins atni

55 ~around p50.56) and progresses upward, containi
segments atni56,7,8, . . . . Upon each of the two end poin
of the first segment (ni55), there converges another epi
trophe which begins atni511. Similarly, the second seg
ment of epistrophea (ni56) has an epistrophe convergin
upon each of its end points, beginning atni512. In fact,
every escape segment has an epistrophe which conve
upon each of its end points. Thus, epistrophes app
throughout the escape-time plot and on all scales.

The main result of this paper is the Epistrophe Theor
~Sec. III!, which proves and elaborates upon the above-no
observations for an arbitrary homoclinic tangle and an a
trary line of initial conditions. The beginning of each epi
trophe is not described by the Epistrophe Theorem, leavin
certain unpredictability in how an epistrophe starts. Wha
described is the asymptotic behavior of the tail of the ep
trophe. In fact, we prove that, up to an overall rescaling,
asymptotic tails of all epistrophes are identical; we char
terize these tails with geometric quantities~a, x, and f in
Theorem 1!.

The recursive nature of the Epistrophe Theorem and
scaling relation between the epistrophe tails implies a cer
self-similarity to the escape-time plot. However, the Epist
phe Theorem is itself not strong enough to imply true se

le

-
of

FIG. 2. Escape datani andnw are plotted for the map in Fig. 1. Shown o
the right is the number of iteratesni required for a point to escape from th
complex; it is plotted as a function ofp parametrizing the line of initial
conditionsL0 . Several sequences~epistrophes! of escape segments are in
dicated with bold arrows. Several escape segments~strophes! are marked by
asterisks; these segments are not easily predicted from the current lev
theory. Plotted on the left is the winding number of the trajectory as
escapes to infinity.
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similarity ~or even asymptotic self-similarity!. Our data indi-
cate that there may be numerous escape segments, whic
call ‘‘strophes,’’ that do not belong toanyepistrophe and tha
even tend to dominate the escape-time plot at long tim
Several such strophes are indicated by asterisks in Fig. 2
can thus say that the Epistrophe Theorem implies a kind
‘‘epistrophic’’ self-similarity: epistrophes~self-similar se-
quences! occur on all scales, but there may also be additio
segments, or strophes, that persist~and may even dominate!
in the asymptotic limit.

On the left-hand side of Fig. 2 is plotted the windin
numbernw of escape, i.e., the number of times a trajecto
winds around the ‘‘center’’ of the complex as it escapes
infinity. ~In this case the center is the stable zone in Fig.!
The data show that the winding numbernw is constant along
an epistrophe. For example, all escape segments in epi
phe a have nw51; all segments in epistrophed have nw

52.5, and so on. Also, the winding number of an epistrop
is always one greater than the winding number of the s
ment upon which it converges. For example, epistrophec has
nw52 and converges upon a segment ofa with nw51. In a
separate publication, we will prove several theorems expl
ing these observations.

The impact of tangles on chaotic transport has been
active field of research for at least the last 20 years, w
notable contributions by MacKay, Meiss, and Perciva27

Davis and Gray,4 Rom-Kedar,28,29 Wiggins,15 and numerous
others. More specifically, there has been significant inte
in the fractal behavior of escape-time plots~or alternatively,
scattering functions! in a variety of fields, including work by
Noid et al.,30 Petit and Henon,31 Eckhardt,32,33 Jung and
co-workers,34–39 and Gaspard and co-workers.40,41

Our research was inspired by the work of Tiyapan a
Jafféon the scattering of He from an excited I2 dimer.5–7 In
their study~particularly Ref. 5!, Tiyapan and Jaffe´ examined
a final-action versus initial-angle plot~analogous to the
escape-time plot! over a wide range of scales. In their n
merical data, they identified infinite sequences equivalen
our epistrophes. Jung and co-workers have also extens
studied scattering functions. In particular, they partially la
the asymptotically bound orbits using a symbolic dynami
which captures important topological structures of the sc
tering functions. As in the work of Tiyapan and Jaffe´, the
sequences which we call epistrophes are present in thei
scription. However, none of the above-mentioned work gi
a full characterization of the epistrophes, nor does it giv
proof that all epistrophes of a given map are asymptotic
self-similar and asymptotically similar to each other. This
the primary result of the present paper and is summarize
the Epistrophe Theorem. The Epistrophe Theorem is a
closely related to~but distinct from! Palis’s ‘‘l-lemma.’’42,43

Our paper has the following structure. Section II sta
the technical assumptions we require of the tangle. Sec
III contains the Epistrophe Theorem. Implications for t
fractal structure of the escape-time plots are discusse
Secs. III B–III D. Section IV contains conclusions and a d
cussion of future work. Appendix A defines our examp
map. The proof of the Epistrophe Theorem is contained
Appendix B.
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II. HOMOCLINIC TANGLES

A. Assumptions on the map

We consider an arbitrary ‘‘saddle-center map’’M which
has a simple homoclinic tangle~as shown in Fig. 1! that is
described by the following five assumptions.

Assumption 1: The mapM is a canonical map or, more
precisely, an analytic area- and orientation-preserving d
feomorphism of an open subset of the phase plane.

Assumption 2: The map has an unstable fixed point~X
point! zX , without inversion.

Assumption 3: Proceeding away from theX point, one
branch of the stable manifold and one branch of the unsta
manifold (called the nontangled manifolds) each go to infi
ity without intersecting any other stable or unstable ma
fold; the other branchS of the stable manifold andU of the
unstable manifold (called the tangled manifolds) inters
each other transversely.

Assumption 3 is essentially Rom-Kedar’s definition
an ‘‘open map.’’29 A primary intersection point, or ‘‘pip,’’
zpip is a transverse intersection betweenS andU such that the
segment ofS joining zX to zpip does not intersect the segme
of U joining zX to zpip .15,44 We choose a pipP0 such thatU
crossesS from right to left~using the natural orientation ofU
and S, as in Fig. 1!. The complexis defined as the region
enclosed byS andU from zX to P0 ; it contains its boundary,
including zX . The forward and backward iterates ofP0 are
also homoclinic intersections~with the same sense! and are
denotedPn5M n(P0), 2`,n,`.

Assumption 4: BetweenP0 and P1 , S and U intersect
just once, at a point we callQ0 .

The intersectionQ0 has the opposite sense asP0 , as do
its forward and backward iteratesQn5M n(Q0), 2`,n
,`. The segments ofS andU betweenP0 andQ0 enclose
theescape zone E0 , which by definition contains its outerU
boundary but not its innerS boundary~and neitherP0 nor
Q0). Similarly, the segments ofS andU betweenQ21 and
P0 enclose thecapture zone C0 , which by definition contains
its outerS boundary but not its innerU boundary~and nei-
ther P0 nor Q21). The forward and backward iterates ofE0

andC0 are called theescape zones En and thecapture zones
Cn (2`,n,`).

The lobesC0 andE21 form a turnstile:15,27 on one iter-
ate of the map, all points inC0 map into the complex, i.e.
are captured, and all points inE21 map out of the complex,
i.e., escape. All points that eventually escape the complex
in some escape zoneE2k5M 2k(E0), k.0.

Assumption 5: Mapping forward causes all points in E0

to march off to infinity, never to re-enter the complex. Lik
wise mapping backward causes all points in C0 to march off
to infinity, never to re-enter.

Assumption 5 means that no point can escape from
subsequently return to the complex; equivalently,EnùCn8
5B for n>0 andn8<0.

By convention we orient the tangle in thepq plane as
shown in Figs. 1 and 3; that is,P0 is west ofzX , andS is
north of U when linearized aboutzX .
cense or copyright; see http://chaos.aip.org/chaos/copyright.jsp
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B. Canonical length on the stable and unstable
manifolds

For any pointz0PS, there is a natural lengths(z0) along
the stable manifold, as measured fromzX . Setting zn

5M n(z0), we define

s~z0!5 lim
n→`

uzn2zXuan, ~1!

whereu u is the standard Euclidean vector norm. The limit
Eq. ~1! is well-defined since after each iterate,uzn2zXu de-
creases by a factora within the linear approximation toM.
It follows from Eq. ~1! that

s~z0!5s~zn!an. ~2!

Up to a constant scale factor, Eq.~2! uniquely determiness.
Under a canonical transformation, the functions(z) only
changes by an overall scale factor. Hence, we calls the ca-
nonical lengthalongS, and we callus(z)2s(z8)u the canoni-
cal length betweenz andz8.

Analogous tos, we define the canonical lengthu along
U by

u~z0!5 lim
n→`

uz2n2zXuan, ~3!

which satisfies

u~z0!5u~z2n!an. ~4!

Recall that the lobesEn andCn each have aU boundary
and anS boundary. We denote the canonical lengths of th
boundaries by

u~E0!5uu~Q0!2u~P0!u, ~5a!

s~E0!5us~Q0!2s~P0!u, ~5b!

u~C0!5uu~P0!2u~Q21!u, ~5c!

s~C0!5us~P0!2s~Q21!u. ~5d!

C. The curve of initial conditions

We choose a~differentiable! curve of initial conditions
L0 that passes through the complex. We introduce onL0 the

FIG. 3. A qualitative representation of a homoclinic tangle satisfying A
sumptions 1–5. It displays features similar to the data in Fig. 1, but
escape zones and capture zones are more clearly labeled.
ownloaded 26 Feb 2009 to 132.229.227.87. Redistribution subject to AIP li
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Euclidean line elementdl5(dp21dq2)1/2, which gives us a
coordinatel on L0 and a lengthlab5ula2lbu of the seg-
ment between end pointsl5la andl5lb . We allow for an
arbitrary positive densitydm5r(l)dl of initial points on
L0 , which defines the measure

mab5U E
la

lb
r~l!dlU. ~6!

III. EPISTROPHES AND EPISTROPHIC FRACTALS

A. The Epistrophe Theorem

A segment of the line of initial conditionsL0 that es-
capes the complex ink iterates lies in the intersection ofL0

with the escape zoneE2k . It is, in fact, one connected com
ponent of this intersection. With rare exceptions, the e
points of an escape segment are therefore points on the s
manifoldS.45 We will prove that upon any~transverse! inter-
section betweenS andL0 , there converges an epistrophe
escape segments.

The existence of epistrophes is suggested by the foll
ing argument. In a small neighborhood ofzX , the mapM is
almost linear and can be re-expressed in new canonical
ordinates (Q(q,p),P(q,p)) by (Q,P)°(Q8,P8), where46

Q85aQ1O~2!, ~7a!

P85~1/a!P1O~2!. ~7b!

Ignoring the higher order terms,S and U are, respectively,
the positiveP axis and negativeQ axis. SupposeL0 is a
horizontal line intersecting the positiveP axis nearzX , as
shown in Fig. 4. Then, again ignoring higher order terms,
width u(E2k) of the base of an escape zone decreases
factor of a on each backward iterate. Thus, as the esc
zone is mapped backward, it is squeezed by 1/a in the Q
direction and stretched bya in theP direction. Clearly, these
lobes must eventually intersectL0 , and their intersectionsek

must form an infinite sequence of geometrically decreas
intervals, converging upon the intersectionzS of L0 with S;
the Euclidean lengthslk decrease aslk115lk /a ~in the
limit k→`).

The Epistrophe Theorem asserts that such geometric
quences appear for any map with a homoclinic tangle~satis-
fying Assertions 1–5! and for any differentiable curveL0

intersecting the stable manifoldS at any distance fromzX ,
even far from the region where the linearization~7! is sen-
sible.

Theorem 1 „Epistrophe Theorem…: Let M be any
‘‘saddle-center map’’ (as defined by Assumptions 1–5) andzS
be any transverse intersection between the stable manifoS
and the differentiable curve of initial conditionsL0 . For
each k.0 choose the escape segmentek,L0ùE2k closest
to zS (as measured alongL0 .) Then there is some initial k0

such that for all k>k0 , the escape segmentek exists and:
(i) The segmentsek converge monotonically uponzS (i.e., the
distance betweenek and zS decreases monotonically).
(ii) Define: mk—the measure ofek [using Eq. (6)]; gk—the
measure betweenek and ek11 ; dk—the measure betweenek

andzS . Providedr(zS)Þ0, all three measures converge ge
metrically to zero as

-
e
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lim
k→`

mka
k5Km.0, ~8a!

lim
k→`

gka
k5Kg.0, ~8b!

lim
k→`

dka
k5Kd.0, ~8c!

wherea is the Liapunov factor ofzX and Km , Kg , Kd are
positive real numbers. Furthermore,

lim
k→`

mk

gk
5

Km

Kg
[x.0, ~9a!

FIG. 4. Introducing new canonical coordinates (Q,P), the saddle-center
map M, linearized about theX point zX , has the simple formQ°aQ,
P°(1/a)P. The stable manifoldS and unstable manifoldU coincide, re-
spectively, with the positiveP and negativeQ axes. A sequence of back
ward iterates of the escape zoneE2k is shown shaded. Under each iterat
the width of the lobe decreases by 1/a while the height increases bya.
Eventually, these iterates must intersect the line of initial conditionsL0 ,
shown as a horizontal line passing through theP axis. The escape segmen
ek11 ,ek12 , . . . which arecreated by these intersections decrease in size
the same geometric factora ~in the asymptotic limit!. They eventually con-
verge upon the intersectionzS of L0 with S.

FIG. 5. The lengthmn of an escape segment is plotted as a function
iterate numbern5ni for the five epistrophesa–e shown in Fig. 2. The lines
all have the same slope, equal to2 log a, wherea52.776 is the Liapunov
factor of theX point in Fig. 1. This factor can be computed analytically fro
Eqs. ~A4! and ~A5!. Clearly asn→`, mn decays geometrically withmn

→(constant)3a2n.
ownloaded 26 Feb 2009 to 132.229.227.87. Redistribution subject to AIP li
lim
k→`

mk

dk
5

Km

Kd
[f.0, ~9b!

where x5u(E0)/u(C0) and f5u(E0)/u(P0)5x(a
21)/(a1x). [The lengths u(P0), u(E0) and u(C0) are de-
fined in Eqs. (3), (5a), and (5c).]

The constantsKm , Kg , Kd depend upon which epistro
phe is examined, but their ratios do not, as evident from
formulas forx andf. This result was unexpected to us; w
were struck by the fact that not only the same factora but
also the same ratiosx and f apply to each epistrophe, n
matter how far it is fromzX .

The Epistrophe Theorem describes the tails of
quences. The value ofk0 and the exact values ofmk , gk ,
anddk ~especially the early values! cannot be predicted from
the present considerations. What can be predicted is howmk ,
gk , anddk decay in the asymptotic limit.

The Epistrophe Theorem is proved in Appendix B. Equ
tions ~8a!, ~8b!, and~9a! are verified numerically in Figs. 5
6, and 7. These plots indicate that the asymptotic beha
predicted by the theorem is approached quickly.

Notice that no epistrophe converges upon the bound
of a stable zone. For example, in the upper half of Fig.
epistrophea converges upward to the boundary of the co
plex, but there is no epistrophe converging downward wh
the boundary of the stable zone lies. Similarly, in the bott

y

f

FIG. 6. Analogous to Fig. 5, the distancegn between successive escap
segments is plotted as a function of iterate numbern5ni . It is again readily
apparent that asn→`, gn→(constant)3a2n, wherea52.776 is the same
as in Fig. 5.

FIG. 7. The ratiomn /gn of the data in Fig. 5 to the data in Fig. 6 is plotte
The ratio for each epistrophea–e has the same asymptotic valuex
52.2113, which agrees with an independent computation ofx from the
formula x5u(E0)/u(C0)5 limk→`uQ2k2P2ku/uP2k2Q2(k11)u.
cense or copyright; see http://chaos.aip.org/chaos/copyright.jsp
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half of Fig. 2, epistropheb converges downward to th
boundary of the complex, but no epistrophe converges
ward to the stable zone.

B. Epistrophes and strophes

Any orderly infinite sequence of escape segments p
dicted by the Epistrophe Theorem is called anepistrophe.
The irregular beginning of such a sequence, or any esc
segment or group of segments that is not part of an epis
phe, is called astrophe. The strophes contain the unpredict
behavior in the escape-time plot.

It is helpful to examine the origin and meaning of th
word ‘‘epistrophe’’ because the parts of this word descr
the structure of epistrophic fractals. One dictionary47 defines
‘‘strophe’’ simply as a stanza of a poem or ballad, wh
another48 defines it as a stanza that might have irregu
structure, such as variable length and rhythm. This ambig
is useful to us, because we might or might not find regu
structure in the escape segments that we call strophes.

‘‘Epi-’’ is used here in the sense of ‘‘the end of’’ o
‘‘concluding’’ ~as in epidermis or epilogue!. An epistrophe in
rhetoric is a repeated ending following a variable beginni
One of the most familiar in American English is from Lin
coln’s Gettysburg Address: ‘‘of the people, by the peop
and for the people.’’ Here ‘‘of,’’ ‘‘by,’’ and ‘‘for’’ are the
strophes and the repetitions of ‘‘the people’’ are epistroph
This is an example in which the epistrophes dominate
structure, as the strophes each have one syllable, while
epistrophes have three. Analogous behavior may occur
dynamical epistrophes: if the Liapunov factora is close to
one, the total length of the segments in an epistrophe
tend to dominate over the length in the strophe.

A quite different epistrophic structure is contained in t
Hebrew creation recitative, with its description of the first s
days. The descriptions of each day~the strophes! vary in
length and structure. Each strophe ends with the epistro
‘‘And the evening and the morning were the@nth# day.’’ n
51, . . . ,6. The epistrophe is short, and the strophes domi
the length of the narrative. This tends to happen in dynam
epistrophes if the Liapunov factora is large.

Actually the creation recitative might be called a doub
epistrophic narrative, because it contains seven repetition
a different epistrophe: ‘‘ . . . and God sawthat it was good.’’
These are interspersed with a rhythmic structure differ
from that of the ‘‘nth day’’ epistrophe; the second day do
not contain this epistrophe, but it appears in other days o
or twice, sometimes at the end of the day and sometime
the middle. Complicated interleaving of two or more diffe
ent families of epistrophes~typically with different a! can
occur, for example, in a dynamical system if the boundary
the complex contains more than oneX point.

For dynamical applications, we define an ‘‘epistroph
as an infinite sequence of escape segments having the
erties described by the Epistrophe Theorem; consistent
rhetoric, an epistrophe has a predictable ending. We de
‘‘strophe’’ less precisely, consistent with its use in rhetor
and apply it in two contexts:~1! A strophe is the unpredicte
beginning of an epistrophe; that is, the first few escape s
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, ek011 , . . . of anepistrophe~with unpredicted val-

ues ofk0 , mk0
, etc.! constitute one strophe. In the followin

paper, we will show that there is partial predictability
these strophes.~See also Secs. III C and IV.! ~2! A strophe is
any additional escape segment, or group of escape segm
that is not part of an epistrophe. Several such strophes w
indicated by asterisks in Fig. 2. For now, we deliberate
avoid giving the word ‘‘strophe’’ a sharp definition; we leav
open the possibility that the strophes might later be descri
in some more complex framework.

C. Epistrophic self-similarity

The Epistrophe Theorem implies a certain recurs
structure to the escape-time plot: every epistrophe is asy
totically self-similar and is asymptotically related to an
other epistrophe by a change in scale. In this sense, there
kind of asymptotic self-similarity of sequences of esca
segments in the escape-time plot. A second type of regula
will be established in the next paper, where we will state a
prove an ‘‘Epistrophe Start Rule.’’ As a result of the glob
topology of the tangle, there is a ‘‘minimal set’’ of escap
segments. In this minimal set, an epistrophe begins at
iteratek0 , exactlyD5D11 iterates after the segment upo
which it converges.~We will explain that the parameterD is
the minimal delay time of the tangle.! Hence, in the minimal
set there is a simple recursive pattern to the escape segm
on each side of a given escape segment, a new epistr
beginsD iterates later, and these epistrophes converge to
given escape segment as described by the Epistrophe T
rem; then on each side of each segment in the new epis
phes, a further new epistrophe beginsD iterates later; at ev-
ery level, every segment spawns two new epistrophesad
infinitum. One might expect this to produce a regular se
similar ~or at least asymptotically self-similar! fractal struc-
ture. Indeed, this is readily seen in the ‘‘standard’’ Sma
horseshoe~e.g., Ref. 38!.

Strict self-similarity and asymptotic self-similarity ar
consistent with the Epistrophe Theorem and the Epistro
Start Rule, but they are not guaranteed by these results. F
these results allow the beginnings of the epistrophes to c
tain irregular lengths that do not follow any simple patte
Indeed in our numerical studies we do not see any sim
pattern to the lengths of the first segment of an epistrop
More importantly, we find additional, unpredicted strop
segments which are not part of the minimal set, and wh
therefore do not fit the pattern of the minimal set. Furth
more, numerical evidence seems to indicate that these
phe segments tend to dominate at long times.

It is possible, and even likely, that the strophes ob
some higher-order and more complex recursive rules. If
could uncover these rules, one might hope to find a dee
and more complex kind of asymptotic self-similarity in th
escape-time plot; one might hope that there would be a fi
number of such rules. However, it is genera
acknowledged28,29,35,44 that to describe the topology of
tangle requires a countable infinity of topological para
eters, reflecting the growing topological complexity of th
tangle on finer and finer scales. This situation is nicely
cense or copyright; see http://chaos.aip.org/chaos/copyright.jsp
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scribed by Ru¨ckerl and Jung.35 Thus, for any finite descrip-
tion of the tangle, one expects eventually to discover in
escape-time plot additional structure which had not yet b
predicted and which eventually comes to dominate the st
ture that is predicted.

We use the term ‘‘epistrophic self-similarity’’ to describ
the above-mentioned situation: throughout the escape-
plot and on all scales there are epistrophes; they are al
ymptotically self-similar and each is similar to every oth
However, there may also be unpredicted strophe segm
which also occur on all scales and which may come to do
nate the regular epistrophe structure.

What is the distinction between asymptotic and ep
trophic self-similarity? A fractal has asymptotic se
similarity if through repeated magnifications about any po
of the fractal, the pattern converges to an asymptotic st
ture. Epistrophic self-similarity is weaker, requiring only th
existence of epistrophes, as described earlier. If when rep
edly magnifying the fractal, one continues to see new str
tures emerge, then the fractal certainly does not pos
asymptotic self-similarity, but may still possess epistrop
self-similarity.

D. Epistrophic fractals

Thus far, we have focused on the segments ofL0 that
escape the complex. The question remains: How do the e
trophes influence the points that survive and never esca
Jung and Scholz observed that the stable manifolds of al
bound orbits~periodic and aperiodic! give rise to a Cantor
set of singularities for a scattering function.34 We show that
the Epistrophe Theorem itself directly leads to a Cantor
within the set of surviving points.

Obviously any point inside a stable island survives. A
cordingly, we define thestable domain Sto be the union of
all open disks each of which contains no escaping poi
The setS is an open set in the plane, containing the interi
of all the stable islands. Any point inS is stably surviving, in
the sense that any sufficiently small displacement of
point still results in survival.~By definition, S contains all
stably surviving points.! Continuity guarantees that points o
the boundary ofS ~the ‘‘shoreline’’ of the stable islands! also
survive. However, they areunstably survivingin the sense
that a small perturbation can cause them to escape.

There are other sets of unstably surviving points in
complex besides the shoreline of the islands of stability.~1!
The X point zX is unstably surviving.~2! Many unstable pe-
riodic orbits are embedded in the chaotic sea surrounding
islands of stability.~3! There may be entire curves of ne
trally stable periodic orbits.~4! Each unstable periodic orb
has stable manifolds which do not escape.~5! There may be
Cantori of surviving points in the chaotic sea; a Cantorus
an invariant Cantor set which is the remnant of a dissol
KAM torus.27 ~6! There are chaotic trajectories that wand
about in the chaotic sea but never escape. There migh
other types of unstably surviving points which we have om
ted here.

The line of initial conditionsL0 runs through the com
plex and may intersect some of the above-mentioned se
ownloaded 26 Feb 2009 to 132.229.227.87. Redistribution subject to AIP li
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surviving points, while missing others. Certainly,L0 inter-
sects the stable manifold ofzX an infinite number of times.
We also expect thatL0 may intersect the setS of stable
islands. Each such intersection will produce an open segm
of L0 which does not escape, bounded by surviving e
points which are part of the shoreline ofS. These are the
only generic intervals ofL0 known to us that do not escape.49

The Epistrophe Theorem yields specific results about
structure of the setST of surviving points ofL0 . The set of
escaping points is denotedE. ~See Fig. 8.! Since each escap
segment is open, the setE is also open.50 The setST , being
everything not inE, is closed~and hence compact!.

We defineS to be the interior of the setST ; that is,S is
the union of all open sets inST . As noted earlier, generically
S consists entirely of points in the interior of stable island
Any surviving point not inS we put in a set denotedF, soF
contains whatever points ofL0 survive, other than open in
tervals; all points inF are unstably surviving. The setF is
constructed by the following process. After a finite numben
of iterates of the map, a finite number of escape segm
will have been removed~assuming thatL0 is analytic!. Be-
tween these escape segments are intervals that have ma
to survive forn iterates. As we continue to iterate the ma
we remove subintervals of these surviving intervals. In
limit, if there are any surviving intervals, we put them in
the setS. What remains isF. This is very much like the
construction of the Cantor middle-third set. In fact, we de
onstrate in the following thatF is a topologicalCantor set.

A topological Cantor set is any set which is homeom
phic to a subset of the real line and which is compact~i.e.,
closed and bounded!, perfect ~i.e., containing no isolated
points!, and totally disconnected~i.e., containing no
intervals!.51 All Cantor sets are homeomorphic~topologically
equivalent! to each other,51 so when thinking about the to
pology of Cantor sets, it is sufficient to imagine the midd
third Cantor set. Cantor sets may differ in their metric stru

FIG. 8. The above schematic illustrates the relations between various
sets ofL0 which are important for understanding the fractal nature of
cape. Each branching of the tree represents a partition of the upper se
the two lower disjoint subsets.
cense or copyright; see http://chaos.aip.org/chaos/copyright.jsp
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ture, that is, in the lengths and separations of the segm
that are deleted to form the set, and different metric str
tures will in general result in different fractal dimensions
the set.

We assume in the following thatL0 is nowhere tangen
to the stable manifold.~The results can be modified to a
count for such tangencies, but it would obfuscate our disc
sion.! The setF is a Cantor set because it satisfies the th
necessary requirements.~1! It is closed and bounded, i.e
compact~by its definition!. ~2! It is totally disconnected, i.e.
contains no intervals~because they have been explicitly e
cluded!. ~3! It is perfect, i.e., contains no isolated points. T
third assertion follows from the Epistrophe Theorem. If the
were an isolated surviving point, then directly on its rig
there would have to be a~connected! open interval of escap
ing points. But any such interval must lie inside a sing
escape segment. Hence, the isolated point must be the
end point of that escape segment and an intersection betw
L0 andS ~which is transverse by assumption!. Therefore, the
point must have an epistrophe converging upon its left s
which implies that the point is in fact not isolated.

The fractalF is the mutual boundary of the setsST andE.
Topologically, the boundary of a setU is the closure ofU
~i.e., the smallest closed set containingU) minus the interior
of U ~i.e., the largest open set contained inU). By definition,
F is the boundary ofST . We see thatF is the boundary ofE
because any point inF must have a point inE arbitrarily
close to it, otherwise it would be in the interiorS of ST . We
can now summarize the situation as follows: inside the co
plex, the line of initial conditions is partitioned into thre
sets:~1! the setS of all open surviving intervals,~2! the setE
of all open escaping intervals, and~3! their mutual boundary
F; this boundary is a Cantor set.

Like all Cantor sets,F can be divided into two subset
consisting of theaccessibleand inaccessiblepoints. The
fractal F is a line segment with a countable number of op
intervals removed, some being escape segments ofE and
some being~generically! interiors of islands inS. An end
point of an escape segment is said to be accessible froE
because there exists a path beginning inE and terminating on
the end point without encountering any other point outside
E; we denote the countably infinite set of points access
from E by AE . Similarly an end point of a segment inS is
said to be accessible fromS, and we denote the set of suc
points byAS . The setAS may be countably infinite, finite, o
empty. TogetherAE and AS form the countably infinite se
A5AEøAS of accessible points ofF ~i.e., the set of all end
points of deleted intervals, whether inE or S!. Since the
fractal F is uncountably infinite, most points inF lie in the
set, denotedI, of inaccessible points.

Every point ofAE lies on the stable manifold and henc
has an epistrophe converging upon it. However, the point
AS generically do not lie on the stable manifold, but a
rather part of the shoreline ofS. So we do not expect epis
trophes to converge upon the end points of a surviving s
ment of L0 . ~This is readily apparent in Fig. 2.! Neverthe-
less, the epistrophes are dense in the fractal, or more
cisely, the setAE is dense inF.

Because the escape segments exhibit what we ca
ownloaded 26 Feb 2009 to 132.229.227.87. Redistribution subject to AIP li
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epistrophic self-similarity in Sec. III C and becauseF is a
Cantor set, we callF an epistrophic fractal.

IV. DISCUSSION AND FUTURE RESEARCH

The Epistrophe Theorem predicts the existence of
epistrophe converging geometrically upon the end point
any escape segment; it also characterizes the asymptoti
havior of the convergence in terms of geometric quantitiea
and x. However, none of our present results say anyth
about how an epistrophe begins. Most notably, we do
predict the iterate at which an epistrophe starts, and we
tainly do not estimate the lengths or separation distance
the early escape segments.

To understand the early behavior of an epistrophe,
must look at the global topology of the tangle, which is t
topic of the following paper. In that paper, we prove th
another pattern appears in the escape-time plots: the first
ment ek1D of an epistrophe is spawned at some number
iteratesD later than the segmentek8 upon which the epistro-
phe converges.~This fact was observed by Tiyapan an
Jaffé5 and by Jung and co-workers35–37 for certain lines of
initial conditions in scattering problems.! This pattern is
clearly visible in Fig. 2 withD56. The pattern follows from
the fact that the topological structure of the map forces
existence of a certain minimal required set of escape s
ments; this minimal set can be shown to have the sta
recursive pattern, forni sufficiently large. Typically there are
additional escape segments~strophes! not predicted by the
pattern; some of these unpredicted segments are marke
asterisks in Fig. 2. Nevertheless, the minimal set seem
characterize the early structure of the escape-time plots
markably well. However, based on numerical evidence,
believe that for large enough iterate number, the minimal
will eventually be overwhelmed by the unpredicted se
ments, both in total number at a given iterate and in to
measure.~Notice that the unpredicted segments in Fig. 2 te
to be the longer segments at high iterate number.!

In future papers, we shall also present theorems conc
ing the winding number~Fig. 2!, and we shall show how al
these concepts describe the ionization of a hydrogen a
placed in external electric and magnetic fields.

We conclude by noting that standard references
fractals52 discuss at least three distinct types of se
similarity: ~1! regular self-similarity, as for the Canto
middle-third set or the Koch snowflake;~2! asymptotic self-
similarity, which characterizes, for example, sequences
period-doubling bifurcations;~3! statistical self-similarity,
which might describe coastlines or clouds. To this list we a
‘‘epistrophic self-similarity,’’ in which at all levels of resolu-
tion there are asymptotically similar sequences, but ad
tional unpredicted segments may also persist.
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APPENDIX A: A FAMILY OF SADDLE-CENTER MAPS

We define a mapM(q1 ,p1)5(q2 ,p2) by

q25q11
]G~ q̄,p̄!

]q̄
, ~A1a!

p25p12
]G~ q̄,p̄!

]q̄
, ~A1b!

q̄5~q11q2!/2, ~A1c!

p̄5~p11p2!/2, ~A1d!

where the ‘‘Poincare´ generator’’G(q,p) is53,54

G~q,p!5tF p2

2m
1V~q!G ~A2!

and where

V~q!52sech~q!2 f q ~A3!

is a local potential well that goes to infinity on the left b
only has a potential barrier on the right. It can be shown t
this map is canonical and that it is well defined on the en
phase plane.

A fixed point of the map corresponds to a stationa
point of G(q,p), where]G/]p5]G/]q50. The fixed point
is stable or unstable according to whether the Hessian d
minant D5(]2G/]p2)]2G/]q22(]2G/]q]p)2 is positive
or negative.53,54 Accordingly, the map~A1! has exactly one
stable and one unstable fixed point, located at the local m
mum and the local maximum ofV(q). The eigenvalues of a
fixed point are given by

a65
26A2D

27A2D
. ~A4!

For the unstable fixed point of the map~A1!, we have the
explicit formula

D52
t2

m
AJ~12AJ!

2
, ~A5a!

J5124 f 2, ~A5b!

from which the Liapunov factora5a1.1 can be com-
puted.

APPENDIX B: PROOF OF THE EPISTROPHE
THEOREM

1. Normal form near an X point

We will need the following ‘‘normal form’’ theorem
proved by Moser.55

Theorem 2„Moser, Ref. 55…: In the neighborhood of an
X point of an analytic area- and orientation-preserving m
of the plane(q,p)°(q8,p8), there exists an analytic area
preserving change of coordinates(q,p)°(Q,P) that places
the map into the normal form(Q,P)°(Q8,P8) satisfying

Q85Q@a1 f ~QP!#, ~B1a!

P85P/@a1 f ~QP!#, ~B1b!
ownloaded 26 Feb 2009 to 132.229.227.87. Redistribution subject to AIP li
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wherea is the Liapunov factor of theX point. The coordinate
change and the function f(QP) are power series that have
nonvanishing radius of convergence about theX point. The
function f depends only on the product Q times P, and
f (0)50.

A corollary of Moser’s theorem is that the mapping~B1!
preserves the product

Q8P85QP, ~B2!

so the hyperbolic curvesQP5constant are invariant sets un
der the map. We choose an open setD that is convex in the
PQ coordinates, that contains theX point of M, and in
which the normal form converges.

2. Convergence factors are invariant under
differentiable mappings

Consider an infinite sequence of pointszn5(qn ,pn) that
lie on a differentiable curveC and that converge geometr
cally to a pointz`PC; i.e., the Euclidean arclengthdn , mea-
sured alongC betweenzn andz` , satisfies

lim
n→`

dnbn5K, ~B3!

for someb.1 andK.0. We callb theconvergence factor.
For any map of the planeN, which is differentiable and
locally invertible aboutz` , define Dn as the Euclidean
arclength betweenZn5N(zn) and Z`5N(z`), measured
alongN~C!.

Lemma 1: The convergence factorb is invariant under
the mappingN, that is,

lim
n→`

Dnbn5J0K.0. ~B4!

Here, J05uJt̂u where J5]N/]zuz`
is the232 Jacobian ma-

trix evaluated atz5z` and t̂ is the unit tangent to the curve
C at z` .

The notationu u denotes the standard Euclidean vec
norm. The proof of this lemma is a simple exercise.

3. Iterates of a curve intersecting the stable manifold
approach the unstable manifold

Consider any differentiable curveC0 having a transverse
intersection with the stable manifoldS of M at a pointr0

5(q0 ,p0) having canonical length coordinater 05s(r0)
alongS; we assumeC0 does not intersect the segment ofS
joining zX to r0 ~Fig. 9!. The differentiable curveC1

5M(C0) intersects S at a point r15(q1 ,p1)5M(r0),
which is closer to theX point zX . By Eq.~2! r1 has canonical
length coordinater 15s(r1)5r 0 /a. Applying M repeatedly,
we obtain an infinite sequence of curvesCn that intersectS in
a sequencern converging geometrically tozX with conver-
gence factor equal to the Liapunov factora: r nan5r 0Þ0.

The curvesCn ‘‘approach the unstable manifold’’ in the
sense that every pointzU on U is the limit of a sequence o
pointsznPCn converging geometrically with factora.

Lemma 2: For any differentiable curveC0 passing trans-
versely throughS at a point r0 and for any differentiable

curve C̄ passing transversely throughU at a point zU , the
cense or copyright; see http://chaos.aip.org/chaos/copyright.jsp
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curvesCn5M n(C0) and C̄ intersect for all n large enough
We further assumeC0 does not intersect the segment ofS
joining zX to r0 . We then choosezn to be the point inCnù C̄
closest tozU ~as measured alongC̄). The sequencezn satisfies

lim
n→`

zn5zU , ~B5!

lim
n→`

uzn2zUuan5A~zU , t̂!r 0Þ0, ~B6!

wherea is the Liapunov factor ofzX and A(zU , t̂) is a func-
tion that, for a given mapM, depends only on the intersec

tion point zU and the tangentt̂ to the curveC̄ at zU .
Proof: First supposezU and r0 lie within the domainD

in which the normal form applies~Appendix B 1!. Within D,
we use the normal-form coordinates (Q,P), in which casezU
and r0 are represented byZU5(QU,0) andR05(0,R0). By
Lemma 1, if we prove Lemma 2 in the (Q,P) coordinates
then we have proved Lemma 2 in the original (q,p) coordi-
nates.

The point Zn5(Qn ,Pn) in Cnù C̄ is the nth iterate of
some pointZn

05(Qn
0 ,Pn

0) in C0 . ~See Fig. 9.! Thus, iterating
Eq. ~B1!, we see that

Qn5Qn
0@a1 f ~QnPn!#n, ~B7a!

Pn5Pn
0@a1 f ~QnPn!#2n. ~B7b!

Near the pointR0 the curveC0 is the graph of a differentiable
function P5C0(Q), and similarly, near the pointZU , the
curve C̄ is the graph of a differentiable functionQ5C̄(P).
Combining this with Eq.~B7!, we find that for n large
enoughPn must satisfy

C̄~Pn!5Qn
0@a1 f ~PnC̄~Pn!!#n, ~B8a!

Pn5C0~Qn
0!@a1 f ~PnC̄~Pn!!#2n. ~B8b!

FIG. 9. This diagram, used for proving Lemma 2, depicts the neighborh
of zX ~the origin! in normal-form coordinates (Q,P). The dashed lines are
the invariant hyperbolas of the map. The curvesCn , Cn11 , andCn12 are the
nth, (n11)th, and (n12)th iterates ofC0 , respectively. Similarly, the

points Zn , Zn11 , and Zn12 lying on C̄ are thenth, (n11)th, and (n
12)th iterates of the pointsZn

0 , Zn11
0 , andZn12

0 , respectively. The unla-
beled dots represent intermediate iterates of these points.
ownloaded 26 Feb 2009 to 132.229.227.87. Redistribution subject to AIP li
Solving for Qn
0 in Eq. ~B8a! and inserting the result into Eq

~B8b!, we find

Pn5Gn~Pn!@a1F~Pn!#2n, ~B9!

where

Gn~P!5C0~C̄~P!@a1F~P!#2n!, ~B10!

F~P!5 f ~PC̄~P!!. ~B11!

The functionsGn(P) and F(P) have the following proper-
ties: ~1! Gn(P) and F(P) are well defined, differentiable
functions in the neighborhood ofP50 ~for n sufficiently
large!; ~2! F(0)50; ~3! Gn(0)Þ0. Observe that Eq.~B9! is
an implicit expression forPn .

Lemma 2a: For each n, choose Pn.0 to be the smallest
real solution to Eq. (B9). Then for n sufficiently large, Pn is
well defined andlimn→`Pnan5R0 .

Proof: Define En(P)5P@a1F(P)#n/Gn(P)21. Then
Pn satisfies Eq.~B9! in the neighborhood of 0 if and only i
it is a zero ofEn . Let e.0 be given. Recalling thatF(0)
50 anda.1, we assume thate is small enough so thata
1F(e).1 andC̄(e) is well defined. This implies

lim
n→`

Gn~e!5C0~0!5R0.0, ~B12!

and furthermore,

lim
n→`

En~e!5 lim
n→`

e@a1F~e!#n

R0
51`. ~B13!

Combining this result with the fact thatEn(0)521 @since
Gn(0)Þ0], we see that there must be a zero ofEn between
0 ande for all n large enough. Sincee.0 was arbitrarily
small, we can construct a sequencePn of zeros ofEn(P)
such thatPn goes to 0. We choose the sequencePn to consist
of the smallest positive roots ofEn .

Next, notice that

lim
n→`

nPn5 lim
n→`

n@a1F~Pn!#2nGn~Pn!

5 lim
n→`

n@a1F~Pn!#2nR050, ~B14!

where the first equality follows from Eq.~B9!, the second
from Eq. ~B12!, and the last fromF(0)50. Finally,

lim
n→`

ln~Pnan!5 ln R02 lim
n→`

n ln@11F~Pn!/a#

5 ln R02
1

a

dF

dPU
P50

lim
n→`

nPn5 ln R0 ,

~B15!

where the first equality follows from Eqs.~B9! and ~B12!,
the second by expandingF(Pn) about Pn50, and the last
from Eq. ~B14!. This completes the proof of Lemma 2a.

The sequencePn yields the sequence of pointsZn

5(Qn ,Pn)5(C̄(Pn),Pn) in the statement of Lemma 2
Equation~B6! in the normal-form coordinates follows imme
diately from Lemma 2a,

d
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lim
n→`

uZn2ZUuan5 lim
n→`

@Pn
21~Qn2QU!2#1/2an

5A~ t̂!R0Þ0, ~B16!

whereA( t̂)5@11(dC̄/dPuP50)2#1/2 obviously depends only
on the tangentt̂ to C̄ at the intersection pointZU5(QU ,0).
Lemma 1 shows that the transformation back to the orig
(q,p) coordinates introduces a Jacobian factor~dependent on
zU and t̂) which can be absorbed into a newA(zU , t̂).

At this point Lemma 2 is proved providedzU and r0 lie
within D, where the normal form is valid. To extend th
theorem to arbitraryr0 on the stable manifold and arbitrar
zU on the unstable manifold, we use the following ‘‘forwar
backward mapping trick.’’

First supposezU lies within D but r0 lies outside ofD.
We applyM a finite number of timesk until r k lies within
D, and then we repeat the preceding argument.

On the other hand, ifzU lies outside ofD we apply the
inverse mapM 21 to zU j times until zU

2 j5M 2 j (zU) lies
within D. Then by the preceding argument, we identify t
sequence of pointszn2 j

2 j PCn2 jùM 2 j ( C̄) converging to
zU

2 j . We map this sequence forwardj times to arrive at the
sequenceznPCnù C̄ converging tozU . By Lemma 1, the
convergence factor remainsa; we also acquire a Jacobia
factorJ0 from the transformation, but it will depend only o
zU and t̂ and can be absorbed into a newA(zU , t̂). QED

Note thatA(zU , t̂) in Lemma 2 doesnot depend on the
curveC0 . The following corollary exploits this fact.

Lemma 3: For any two differentiable curvesC0 and C08 ,
each passing transversely throughS at the pointsr0 and r08

Þr0 , respectively, and for any differentiable curveC̄ passing
transversely throughU at a point zU , the curves Cn

5M n(C0) andCn85M n(C08) both intersectC̄ for all n large
enough. We further assumeC0 ~or C08) does not intersect the
segment ofS joining zX to r0 ~or r08). We choosezn ~or zn8) to

be the point inCnù C̄ ~or Cn8ù C̄) closest tozU ~as measured

along C̄.) The sequenceszn and zn8 satisfy

lim
n→`

zn5 lim
n→`

zn85zU , ~B17!

lim
n→`

uzn2zn8ua
n5A~zU , t̂!d0Þ0, ~B18!

where d0 is the canonical length betweenr0 and r08 (mea-

sured alongS!, a is the Liapunov factor ofzX , and A(zU , t̂)
is the same function as in Lemma 2.

4. The Epistrophe Theorem

We now complete the proof of the Epistrophe Theore
We cut theU boundary of the capture zoneC1 ~see Fig. 3! at
an arbitrary pointzcut, creating the following two curves:~1!
CQ0

begins atzcut and continues backward alongU until just
pastQ0 ; ~2! CP1

begins atzcut and continues forward alongU
until just pastP1 . Applying Lemma 3 toC05CQ0

, C085CP1
,

and C̄5L0 we find the following.
ownloaded 26 Feb 2009 to 132.229.227.87. Redistribution subject to AIP li
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Lemma 4: For any differentiable curveL0 passing trans-
versely throughU at a pointzU , the capture zones Cn inter-
sectL0 for all n large enough. We chooseen to be the con-
nected component of CnùL0 closest tozU ~as measured
along L0). The en converge uponzU with the Euclidean
lengthln of en satisfying

lim
n→`

lnan5A~zU , t̂!s~C1!Þ0, ~B19!

where s(C1) is the canonical length of theS boundary of C1

[Eq. (5d)].
So long asr(zU)Þ0, Lemmas 2–4 hold when the Eu

clidean lengthl is replaced by the measurem defined by Eq.
~6!, except thatA(zU , t̂) is multiplied byr(zU). In particular,
Eq. ~B19! yields Eq.~8a!

lim
n→`

mnan5@A~zU , t̂!r~zU!#s~C1![KmÞ0, ~B20!

wheremn is the measure ofen .
Betweenen anden11 lies a gap onL0 with measuregn .

Applying Lemma 3 toC05CP1
andC085M(CQ0

) yields Eq.
~8b!,

lim
n→`

gnan5@A~zU , t̂!r~zU!#s~E1![KgÞ0, ~B21!

from which also follows Eq.~9a!,

lim
n→`

mn

gn
5

s~C1!

s~E1!
5

s~C0!

s~E0!
5

Km

Kg
[xÞ0. ~B22!

Similarly, Lemma 2 applied toC05CP1
implies Eq.~8c!,

lim
n→`

dnan5@A~zU , t̂!r~zU!#s~P1![KdÞ0, ~B23!

wheredn is the measure betweenen andzU . From Eq.~B23!
follows Eq. ~9b!,

lim
n→`

mn

dn
5

s~C1!

s~P1!
5

s~C0!

s~P0!
5

Km

Kd
[fÞ0. ~B24!

The Epistrophe Theorem requires studying intersecti
of the pre-iterates ofE0 with L0 . In the preceding results, w
have studied intersections of the forward iterates ofC0 with
L0 . One may, of course, translate between these two vi
points by replacingM with M 21.

The final equality forf follows from

u~P0!5 (
n50

`

@u~C0!1u~E0!a21#a2n5u~C0!
a1x

a21
.

~B25!
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