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We consider a dynamical system given by an area-preserving map on a two-dimensional phase plane
and consider a one-dimensional line of initial conditions within this plane. We record the number of
iterates it takes a trajectory to escape from a bounded region of the plane as a function along the line
of initial conditions, forming an “escape-time plot.” For a chaotic system, this plot is in general not

a smooth function, but rather has many singularities at which the escape time is infinite; these
singularities form a complicated fractal set. In this article we prove the existence of regular repeated

sequences, called “epistrophes,” which occur at all levels of resolution within the escape-time plot.
(The word “epistrophe” comes from rhetoric and means “a repeated ending following a variable
beginning.”) The epistrophes give the escape-time plot a certain self-similarity, called “epistrophic”

self-similarity, which need not imply either strict or asymptotic self-similarity.2003 American

Institute of Physics.[DOI: 10.1063/1.1598311

Chaotic transport, and the escape of trajectories from
defined regions of phase space, has been an important
topic in dynamics for many years, because it describes
phenomena that occur in many branches of physics. For
example, some meteorites that fell on Antarctica are be-
lieved to have come from Mars; how they escaped from
Mars’ gravitational field is a problem in the theory of
chaotic transport. At a smaller scale, one of the impor-
tant topics in nanophysics is ballistic transport of elec-
trons through a small junction: electrons enter a junction
from one lead, bounce around within the junction follow-
ing either regular or chaotic paths, and eventually find
their way to an exit lead? A closely related problem is
chaotic propagation of light rays in a distorted cylindrical
glass bead At the molecular level, we may think about
the breakup of a temporarily bound complex, such as a
He atom weakly bound to anl, molecule’’ At the
atomic level, the ionization of an excited hydrogen atom
in applied electric and magnetic fields is an ideal candi-
date for the laboratory study of chaotic transport.2~4 We
can learn many of the properties of chaotic transport by
studying area-preserving maps of the plane. We examine
the time required to escape from a specified region of the
plane, plotted as a function along a given line of initial
conditions. Within this escape-time plot, we study regular
sequences of escaping intervals, which we call “epistro-
phes.”

I. INTRODUCTION

We are motivated by the chaotic ionization of a hydro-

eled classically by an area-preserving map on a two-
dimensional phase plane. This map exhibits a prominent ho-
moclinic tangle (see the following, which organizes the
dynamics, leading to phase space transport and eventually
escape. The mechanism of escape via a tangle is a common
model for many classical systems. In this paper, we consider
the general problem of escape for an arbitrary map possess-
ing a homoclinic tangle exhibiting the basic structure shown
in Fig. 1.

The map in Fig. 1 has an unstable fixed pddtpoint)

Zy, with a pair of stable and unstable manifolds attached to
it. These manifolds are invariant curves containing all points
that asymptote t@y under forward and backward iterates,
respectively>® The curves intersect transversely at the
point Py. The “complex” is the region bounded by the seg-
ments of the stable and unstable manifolds joiregdo Py;
escape is defined as mapping out of the complex. As ex-
plained by Poincarethe transverse intersectidty produces

a homoclinic tangle. Between successive intersection points
P, andQ,, the manifolds bound lobes denoteégd andC,, in

Fig. 1. As these lobes are mapped forward or backward, their
widths are compressed and their lengths are stretched; they
become long and thin and develop intricate twisted shapes.
The resulting complex structure of the intersecting stable and
unstable manifolds is called a homoclinic tangle.

An important aspect of any classical decay problem is
the distribution of initial points in phase space. When mod-
eling the breakup of molecular collision complexes, for ex-
ample, one normally assumes that the complex is more-or-
less in thermal equilibrium. A microcanonical distribution of
initial probability might be used within the collision com-

gen atom placed in strong parallel electric and magnetiplex, with equal probabilities in equal areas, or perhaps some
fields. The dynamics of the hydrogenic electron can be modether smooth distribution. However, in most experiments on
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excited atoms in strong fields, the initial distribution is quite
different. The electron attains a high energy by single-photon
excitation from a localized strongly bound initial stafe??

© 2003 American Institute of Physics
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FIG. 1. A phase space portrait is shown for a map possessing a single  0.50 0.50
homoclinic tangle[The map is defined by Eq$A1l)—(A3) with 7=1.5, f -0:50 -0:50
=0.25, andn=0.57.] TheX point z4x has a stable manifol§ and unstable P % * ;
manifold/ which cross repeatedly to form the tangle. The primary intersec- os2l 1 N | o052
tion point P, defines the complex, the northern and southern boundaries of
which are the segments d&f and !/ joining P, to zx. Orbits escape the & RN d/7 . ‘ &
complex by mapping fronkE_, into E, and then move away through suc- 0541 | | ‘ b ‘ . ¥ -0.54
cessive iterateE, ,E,,E3, ... . Obits are captured by mapping fro@y C \ \ ‘
into C;. The line of initial conditionsZ, coincides withq=0. oo L . il
VBT s 2 1 0 4 8 2 16 2 au’®
Thyy ;

The trajectories therefore start close to the nucleus and geIG. 2. Escape data; andn,, are plotted for the map in Fig. 1. Shown on
out in all directions. This initial distribution is well modeled the right is the number of iterates required for a point to escape from the

by assuming that all electrons begin exactly at the nucleué:omplex; it is plotted as a function qf parametrizing the line of initial
conditionsL,. Several sequencdspistrophesof escape segments are in-

with constant energy, and with a smooth distribution of OUt-gicated with bold arrows. Several escape segmistitsphes are marked by
going directiong3~?°In the phase plane, this yields a distri- asterisks; these segments are not easily predicted from the current level of
bution of initial states along kne of initial conditions. Thus, theory. Plotted on the left is the winding number of the trajectory as it
we assume that the initial distribution of states in phas&Scapes to infinity.
space lies along some cungg, the details of which depend
on the problem at handSee Fig. 1. Along this curve there
is some initial density of points; for hydrogen this density limit points for epistrophes beginning at higher iterate num-
represents the initial angular distribution of outgoingber. For example, consider epistroplewhich begins an;
electrons?®%® =5 (around p=0.56) and progresses upward, containing
We plot the number of iterateg needed to escape as a segments at;=6,7,8,... . Upon each of the two end points
function along the line of initial condition£,, forming an  of the first segmentr(=5), there converges another epis-
escape-time plotas shown in Fig. 2. Each line segment in trophe which begins am;=11. Similarly, the second seg-
Fig. 2 represents an interval, escape segmendf Ly, in ment of epistrophe (n;=6) has an epistrophe converging
which all points escape the complex at the same iterate. Thepon each of its end points, beginning rgt=12. In fact,
escape-time plot is clearly a very complicated function withevery escape segment has an epistrophe which converges
“fractal” properties; this fractal structure is created by the upon each of its end points. Thus, epistrophes appear
repeated intersections of the stable manifold with the line othroughout the escape-time plot and on all scales.
initial conditions. Our objective is to describe certain regular ~ The main result of this paper is the Epistrophe Theorem
structures within this plot. (Sec. Ill), which proves and elaborates upon the above-noted
Figure 2 contains many prominent sequences of escapebservations for an arbitrary homoclinic tangle and an arbi-
segments, several of which are indicated by bold arrows. Weary line of initial conditions. The beginning of each epis-
call each such sequence apistrophe Epistrophes have sev- trophe is not described by the Epistrophe Theorem, leaving a
eral important propertieg1) Beginning at some initial iter- certain unpredictability in how an epistrophe starts. What is
ate, each epistrophe contains one escape segment at evegscribed is the asymptotic behavior of the tail of the epis-
subsequent iterat€2) Each epistrophe converges to sometrophe. In fact, we prove that, up to an overall rescaling, the
point onL,. (3) Within a given epistrophe, the lengths of the asymptotic tails of all epistrophes are identical; we charac-
escape segments decrease geometricaflythe limit n; terize these tails with geometric quantitieg, x, and ¢ in
— ) with the ratio of successive lengths converging to theTheorem 1.
Liapunov factor(i.e., the largest eigenvaluer of the X The recursive nature of the Epistrophe Theorem and the
point. This is true regardless of which epistrophe we analyzescaling relation between the epistrophe tails implies a certain
The epistrophes form hierarchical sequences—we see iself-similarity to the escape-time plot. However, the Epistro-
Fig. 2 that the end points of each escape segment serve as thiee Theorem is itself not strong enough to imply true self-
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similarity (or even asymptotic self-similarityOur data indi-  [I. HOMOCLINIC TANGLES

cate that there may be numerous escape segments, which W.eAssumptions on the map

call “strophes,” that do not belong tany epistrophe and that

even tend to dominate the escape-time plot at long times. We consider an arbitrary “saddle-center mafp? which

Several such strophes are indicated by asterisks in Fig. 2. Weas a simple homoclinic tangl@s shown in Fig. fLthat is

can thus say that the Epistrophe Theorem implies a kind oflescribed by the following five assumptions.

“epistrophic” self-similarity: epistrophes(self-similar se- Assumption 1: The map1 is a canonical map or, more

quencesoccur on all scales, but there may also be additionaprecisely, an analytic area- and orientation-preserving dif-

segments, or strophes, that persistd may even dominate feomorphism of an open subset of the phase plane

in the asymptotic limit. Assumption 2: The map has an unstable fixed point
On the left-hand side of Fig. 2 is plotted the winding point) z,, without inversion

numbern,, of escape, i.e., the number of times a trajectory  Assumption 3: Proceeding away from tepoint, one

winds around the “center” of the complex as it escapes topranch of the stable manifold and one branch of the unstable

infinity. (In this case the center is the stable zone in Fig. 1. manifold (called the nontangled manifolds) each go to infin-

The data show that the winding numbrgy is constant along v without intersecting any other stable or unstable mani-

an epistrophe. For example, all escape segments in ep'Strflild; the other branchS of the stable manifold ant¥ of the

phe a haven,=1; all segments in epistrophe haven,, unstable manifold (called the tangled manifolds) intersect

=2.5, and so on. Also, the winding number of an ep|stropheealch other transversely

s always one.gre.ater than the winding numbgr of the seg- Assumption 3 is essentially Rom-Kedar’s definition of
ment upon which it converges. For example, epistraphas ) 429 . . . . .
an “open map.™” A primary intersection point, or “pip,

n,=2 and converges upon a segmeniaokith n,=1. In a is a transverse intersection betwe@andi/ such that the
separate publication, we will prove several theorems explaingp'p IS & lransverse intersect W sy

ing these observations. segn?elnt_ ofS joining lego4§pip does not inte_rsect the segment

The impact of tangles on chaotic transport has been aff ¢ 10iNiNg x 10 ;. ™™ We choose a pif, such that/
active field of research for at least the last 20 years, wittF"0SsesS from right to left(using the natural orientation of
notable contributions by MacKay, Meiss, and Percifal, @ndsS, as in Fig. 1. The complexis defined as the region
Davis and Gray, Rom-Kedar®?° Wiggins® and numerous enclosed bys andi/ from zy to Py; it contains its boundary,
others. More specifically, there has been significant interedficluding zy. The forward and backward iterates f are
in the fractal behavior of escape-time pléts alternatively, —also homoclinic intersectiongvith the same seng@nd are
scattering functionsin a variety of fields, including work by ~ denotedP,= M "(P), —o<n<c.

Noid et al,*® Petit and HenoR! Eckhardt?®® Jung and Assumption 4: BetweeR, and P,;, S and I/ intersect
co-workers**~*%and Gaspard and co-workéf%* just once, at a point we calD,.

Our research was inspired by the work of Tiyapan and  The intersectiorQ, has the opposite sense Rg, as do
Jaffeon the scattering of He from an excitegdimer:r"7 In its forward and backward iterate®,= M "(Qg), —»<n
their study(particularly Ref. 5, Tiyapan and Jaffexamined <. The segments af andi/ betweenP, and Q, enclose
a final-action versus initial-angle platanalogous to the theescape zone E which by definition contains its outéf
escape-time plotover a wide range of scales. In their nu- poundary but not its inne boundary(and neitherP, nor
merlca.I data, they identified infinite sequences equwalen_t t®),). Similarly, the segments o and/ betweenQ_; and
our epistrophes. Jung and co-workers have also extensively, enclose theapture zone g, which by definition contains
studied scattering functions. In particular, they partially labelits guters boundary but not its inne boundary(and nei-
the asymptotically bound orbits using a symbolic dynamicstherp0 nor Q_,). The forward and backward iterates B§

which captures important topological structures of the scatandco are called thesscape zones Fand thecapture zones
tering functions. As in the work of Tiyapan and Jaftee C, (—o<n<w)
n .

seq_utgncea which we call e}pilr?troghes are pt)resegt n tkhe!r de- The lobesCy andE _; form aturnstile on one iter-
Scription. HOWEVET, none ot In€ above-mentioned Work gives,, o ¢ ¢ map, all points i€, map into the complex, i.e.,
a full characterization of the epistrophes, nor does it give a .
. ; . are captured, and all points B_; map out of the complex,
proof that all epistrophes of a given map are asymptoncall)i e., escape. All points that eventually escape the complex lie
self-similar and asymptotically similar to each other. This is.” ™" pe. Allp X y P P
; : : in some escape zorte_, = M ~“(E,p), k>0.

the primary result of the present paper and is summarized il ; _ ing ’ Il Doints i
the Epistrophe Theorem. The Epistrophe Theorem is also ASSumption 5: Mapping forward causes all points ip E
closely related tgbut distinct from Palis's “\-lemma.” 4243 to march off to infinity, never to re-enter the complex. Like-

Our paper has the following structure. Section Il statesViS€ mapping backward causes all points ip 6 march off
the technical assumptions we require of the tangle. Sectiolp infinity, never to re-enter _
Il contains the Epistrophe Theorem. Implications for the ~ Assumption 5 means that no point can escape from and
fractal structure of the escape-time plots are discussed ipubsequently return to the complex; equivaleniyN Cy,
Secs. Il B=III D. Section IV contains conclusions and a dis-= for n=0 andn’<0.
cussion of future work. Appendix A defines our example By convention we orient the tangle in theg plane as
map. The proof of the Epistrophe Theorem is contained irshown in Figs. 1 and 3; that i®, is west ofzy, andS is

Appendix B. north of &/ when linearized abouty .

15,27
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FIG. 3. A qualitative representation of a homoclinic tangle satisfying As-

sumptions 1-5. It displays features similar to the data in Fig. 1, but thep

escape zones and capture zones are more clearly labeled.

B. Canonical length on the stable and unstable
manifolds

For any pointzy e S, there is a natural lengt$(z,) along
the stable manifold, as measured from. Setting z,
= M"(zy), we define

)

s(zp) = lim |z,— z4| a",
n—oo
where|| is the standard Euclidean vector norm. The limit in
Eqg. (1) is well-defined since after each iterate,— zy| de-
creases by a factar within the linear approximation tg.
It follows from Eq. (1) that

)

Up to a constant scale factor, E®) uniquely determines.
Under a canonical transformation, the functiefz) only
changes by an overall scale factor. Hence, we sdlle ca-
nonical lengthalongs, and we calls(z) —s(z')| the canoni-
cal length betweerz andz’.

Analogous tos, we define the canonical lengthalong
U by

s(zp) =5s(zy) a".

u(zo)=lim|z_,—zya", (3)
n—o
which satisfies
u(zg)=u(z_,)a". (4)

Recall that the lobek, andC,, each have & boundary

and anS boundary. We denote the canonical lengths of these

boundaries by

U(Eq) =[u(Qo) —u(Py)|, (53
S(Eo)=s(Qo) = s(Po)l, (5b)
u(Co)=|u(Pg) —u(Q-1)|, (5¢)
s(Co)=|s(Po) —s(Q-1)|. (5d)

C. The curve of initial conditions

We choose ddifferentiablg curve of initial conditions
L, that passes through the complex. We introduceCgithe

Geometry and topology of escape. | 883
Euclidean line element\ = (d p?+ dg?) Y2, which gives us a
coordinatex on £, and a length\ ;p=|\ 53— \p| of the seg-
ment between end points=\, and\ =\, . We allow for an
arbitrary positive densitydu=p(N\)d\ of initial points on
Ly, which defines the measure

Ap
Hap= fx p(N)dX|. (6)

Ill. EPISTROPHES AND EPISTROPHIC FRACTALS
A. The Epistrophe Theorem

A segment of the line of initial conditiong, that es-
capes the complex ik iterates lies in the intersection df,
with the escape zone . It is, in fact, one connected com-
onent of this intersection. With rare exceptions, the end
points of an escape segment are therefore points on the stable
manifold S.*> We will prove that upon anytransversginter-
section betwee and £, there converges an epistrophe of
escape segments.

The existence of epistrophes is suggested by the follow-
ing argument. In a small neighborhoodzyf, the mapM is
almost linear and can be re-expressed in new canonical co-
ordinates Q(q,p),P(q,p)) by (Q,P)—(Q’,P’), wheré®

Q'=aQ+0(2), (74
P'=(1/a)P+0(2). (7h)

Ignoring the higher order terms§ and i/ are, respectively,
the positiveP axis and negativ&®) axis. SUppose’, is a
horizontal line intersecting the positive axis nearzy, as
shown in Fig. 4. Then, again ignoring higher order terms, the
width u(E_,) of the base of an escape zone decreases by a
factor of @ on each backward iterate. Thus, as the escape
zone is mapped backward, it is squeezed hy ity the Q
direction and stretched hyin the P direction. Clearly, these
lobes must eventually interse€t, and their intersections,
must form an infinite sequence of geometrically decreasing
intervals, converging upon the intersectibnof £, with S;

the Euclidean length&, decrease aa, 1=\ /a (in the
limit k—o0).

The Epistrophe Theorem asserts that such geometric se-
quences appear for any map with a homoclinic tarigétis-
fying Assertions 1-pand for any differentiable curve,
intersecting the stable manifolfl at any distance fronzy,
even far from the region where the linearizatioh is sen-
sible.

Theorem 1 (Epistrophe Theorem): Let M be any
“saddle-center map” (as defined by Assumptior$landzg

be any transverse intersection between the stable marsfold
and the differentiable curve of initial condition§,. For
each k>0 choose the escape segmepC L,NE_ closest
to zs (as measured along,.) Then there is some initialgk
such that for all =k, the escape segmest exists and:

(i) The segments, converge monotonically upat (i.e., the
distance between, and zs decreases monotonically).

(i) Define: u,—the measure o€, [using Eqg. (6)]; yx—the
measure betweeg, and ¢, 1; —the measure betwees
andzs. Providedp(zs) # 0, all three measures converge geo-
metrically to zero as
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FIG. 4. Introducing new canonical coordinate®,P), the saddle-center
map M, linearized about the&X point zx, has the simple fornQ— aQ,
P—(1/a)P. The stable manifold and unstable manifold/ coincide, re-
spectively, with the positivd® and negativeQ axes. A sequence of back-
ward iterates of the escape zoBe, is shown shaded. Under each iterate,
the width of the lobe decreases byalWhile the height increases hy.
Eventually, these iterates must intersect the line of initial conditiBps
shown as a horizontal line passing through Ehaxis. The escape segments
€k+11€k+2s - - -
the same geometric factar (in the asymptotic limit. They eventually con-
verge upon the intersectiary of £y with S.

lim pea*=K,>0, (8a)
K—s o0
lim yga*=K,>0, (8b)
k— o0
lim 8,a=K;>0, (80)

k—s o0

where « is the Liapunov factor ok and K, , K., K are
positive real numbers. Furthermore,

. Mk K,u
lim—=—-"==y>0, (99
k— oo Yk K’y X
10,F ab td e' '
0,r "~ .
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FIG. 5. The lengthu, of an escape segment is plotted as a function of

iterate numben=n; for the five epistrophea—e shown in Fig. 2. The lines
all have the same slope, equal+tdog «, wherea=2.776 is the Liapunov
factor of theX point in Fig. 1. This factor can be computed analytically from
Egs. (Ad4) and (A5). Clearly asn—o, u, decays geometrically with,
—(constantk o™ ".
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FIG. 6. Analogous to Fig. 5, the distangg between successive escape
segments is plotted as a function of iterate numten; . It is again readily
apparent that as— o, y,— (constant) « ", wherea=2.776 is the same
as in Fig. 5.

(9b)

where xy=u(Ep)/u(Cy) and ¢=u(Ey)/u(Py)=x(«
—1)/(a+x). [The lengths (Py), u(gy) and W C,) are de-
fined in Egs. (3), (5a), and (5c).]

The constantk ,, K,,, K5 depend upon which epistro-
phe is examined, but their ratios do not, as evident from the

which arecreated by these intersections decrease in size byformulas fory and ¢. This result was unexpected to us; we

were struck by the fact that not only the same factdout
also the same ratiog and ¢ apply to each epistrophe, no
matter how far it is fromey .

The Epistrophe Theorem describes the tails of se-
quences. The value d&f, and the exact values qi,, 7y,
and &, (especially the early valugsannot be predicted from
the present considerations. What can be predicted isghow
vk, and gy decay in the asymptotic limit.

The Epistrophe Theorem is proved in Appendix B. Equa-
tions (8a), (8b), and(9a) are verified numerically in Figs. 5,
6, and 7. These plots indicate that the asymptotic behavior
predicted by the theorem is approached quickly.

Notice that no epistrophe converges upon the boundary
of a stable zone. For example, in the upper half of Fig. 2,
epistrophea converges upward to the boundary of the com-
plex, but there is no epistrophe converging downward where
the boundary of the stable zone lies. Similarly, in the bottom

x=2.2113 -

L A -~ % -
20 Y Yoy y,

/
16— i i I { i —

10 | i

P Y

05— —

00 I \ I \ I

30

FIG. 7. The ratiou, /v, of the data in Fig. 5 to the data in Fig. 6 is plotted.
The ratio for each epistropha—e has the same asymptotic valye
=2.2113, which agrees with an independent computatioty éfom the
formula x=u(Eq)/u(Co) =lim,_|Q =P l/[P_ = Qs 1)l
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half of Fig. 2, epistropheb converges downward to the mentsey , €k +1.- - - of anepistrophgwith unpredicted val-
boundary of the complex, but no epistrophe converges upues ofk,, s, etc) constitute one strophe. In the following

ward to the stable zone. paper, we will show that there is partial predictability of
these stropheg$See also Secs. Il C and IM2) A strophe is

any additional escape segment, or group of escape segments,
that is not part of an epistrophe. Several such strophes were

Any orderly infinite sequence of escape segments preindicated by asterisks in Fig. 2. For now, we deliberately
dicted by the Epistrophe Theorem is called gpistrophe  avoid giving the word “strophe” a sharp definition; we leave
The irregular beginning of such a sequence, or any escapmen the possibility that the strophes might later be described
segment or group of segments that is not part of an epistran some more complex framework.
phe, is called &trophe The strophes contain the unpredicted
behavior in the escape-time plot.

It is helpful to examine the origin and meaning of the
word “epistrophe” because the parts of this word describe  The Epistrophe Theorem implies a certain recursive
the structure of epistrophic fractals. One dictioffajefines  structure to the escape-time plot: every epistrophe is asymp-
“strophe” simply as a stanza of a poem or ballad, while totically self-similar and is asymptotically related to any
anothef® defines it as a stanza that might have irregularother epistrophe by a change in scale. In this sense, there is a
structure, such as variable length and rhythm. This ambiguitkind of asymptotic self-similarity of sequences of escape
is useful to us, because we might or might not find regularsegments in the escape-time plot. A second type of regularity
structure in the escape segments that we call strophes.  will be established in the next paper, where we will state and

“Epi-" is used here in the sense of “the end of” or prove an “Epistrophe Start Rule.” As a result of the global
“concluding” (as in epidermis or epilogyeAn epistrophe in  topology of the tangle, there is a “minimal set” of escape
rhetoric is a repeated ending following a variable beginningsegments. In this minimal set, an epistrophe begins at an
One of the most familiar in American English is from Lin- iteratek,, exactlyA=D +1 iterates after the segment upon
coln’s Gettysburg Address: “of the people, by the people,which it converges(We will explain that the paramet& is
and for the people.” Here “of,” “by,” and “for” are the  the minimal delay time of the tang)e-lence, in the minimal
strophes and the repetitions of “the people” are epistrophesset there is a simple recursive pattern to the escape segments:
This is an example in which the epistrophes dominate th@n each side of a given escape segment, a new epistrophe
structure, as the strophes each have one syllable, while tHeeginsA iterates later, and these epistrophes converge to the
epistrophes have three. Analogous behavior may occur fagiven escape segment as described by the Epistrophe Theo-
dynamical epistrophes: if the Liapunov facteris close to rem; then on each side of each segment in the new epistro-
one, the total length of the segments in an epistrophe wilphes, a further new epistrophe begihsterates later; at ev-
tend to dominate over the length in the strophe. ery level, every segment spawns two new epistrophes,

A quite different epistrophic structure is contained in theinfinitum One might expect this to produce a regular self-
Hebrew creation recitative, with its description of the first six similar (or at least asymptotically self-similafractal struc-
days. The descriptions of each déye strophesvary in  ture. Indeed, this is readily seen in the “standard” Smale
length and structure. Each strophe ends with the epistrophéprseshode.g., Ref. 38
“And the evening and the morning were thath] day.” n Strict self-similarity and asymptotic self-similarity are
=1,...,6. The epistrophe is short, and the strophes dominatonsistent with the Epistrophe Theorem and the Epistrophe
the length of the narrative. This tends to happen in dynamicabtart Rule, but they are not guaranteed by these results. First,
epistrophes if the Liapunov facter is large. these results allow the beginnings of the epistrophes to con-

Actually the creation recitative might be called a doubly tain irregular lengths that do not follow any simple pattern.
epistrophic narrative, because it contains seven repetitions dfideed in our numerical studies we do not see any simple
a different epistrophe! ... and God savithat it was good.” pattern to the lengths of the first segment of an epistrophe.
These are interspersed with a rhythmic structure differenMore importantly, we find additional, unpredicted strophe
from that of the nth day” epistrophe; the second day does segments which are not part of the minimal set, and which
not contain this epistrophe, but it appears in other days onctherefore do not fit the pattern of the minimal set. Further-
or twice, sometimes at the end of the day and sometimes imore, numerical evidence seems to indicate that these stro-
the middle. Complicated interleaving of two or more differ- phe segments tend to dominate at long times.

B. Epistrophes and strophes

C. Epistrophic self-similarity

ent families of epistrophegypically with different @) can It is possible, and even likely, that the strophes obey
occur, for example, in a dynamical system if the boundary osome higher-order and more complex recursive rules. If one
the complex contains more than oKepoint. could uncover these rules, one might hope to find a deeper

For dynamical applications, we define an “epistrophe” and more complex kind of asymptotic self-similarity in the
as an infinite sequence of escape segments having the progscape-time plot; one might hope that there would be a finite
erties described by the Epistrophe Theorem; consistent withumber of such rules. However, it is generally
rhetoric, an epistrophe has a predictable ending. We definacknowledgetf?°*>4that to describe the topology of a
“strophe” less precisely, consistent with its use in rhetoric,tangle requires a countable infinity of topological param-
and apply it in two contextg) A strophe is the unpredicted eters, reflecting the growing topological complexity of the
beginning of an epistrophe; that is, the first few escape segangle on finer and finer scales. This situation is nicely de-
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scribed by Rukerl and Jung® Thus, for any finite descrip- Lo
tion of the tangle, one expects eventually to discover in the
escape-time plot additional structure which had not yet been s Sr

A . ) urviving points
predicted and which eventually comes to dominate the struc- (closed)
ture that is predicted. T T~

We use the term “epistrophic self-similarity” to describe S F E

. . . . Interior of Sp Mutual boundary of S & E Escaping points
the abOVE'mentloned Sltuatlon thrOUghOUt the escape-t'me Generically stably ~ Generically unstably surviving (open)
plot and on all scales there are epistrophes; they are all as- omon) (closed)
ymptotically self-similar and each is similar to every other. I i
However, there may also be unpredicted strophe segments Accessible points Inaccessible points
which also occur on all scales and which may come to domi- Endpoints of all (uncountable)
. segments of § and E

nate the regular epistrophe structure. (countably infinite)

What is the distinction between asymptotic and epis- e
trophic self-similarity? A fractal has asymptotic self- - Ag - Ag

.. B . L. . . Points accessible from S Points accessible from E

S|m||ar|ty |f through repeated magn'f'catlons abOUt al’ly pOInt Endpoints of all segments of §; Endpoints of all segments of E;
of the fractal, the pattern converges to an asymptotic struc- <o 1o i wenonhes o e

ture. Epistrophic self-similarity is weaker, requiring only the
existence of epistrophes, as described earlier. If when repedtlG. 8. The e_lbove S(_:hematic illustrates the rglations between various sub-
edly magnifying the fractal, one continues to see new Struc§ets of £, which are important for understanding thg fractal nature of es-

. cape. Each branching of the tree represents a partition of the upper set into
tures emerge, then the fractal certainly does not posses$s wo lower disjoint subsets.
asymptotic self-similarity, but may still possess epistrophic

self-similarity.

surviving points, while missing others. Certainlg, inter-
sects the stable manifold af an infinite number of times.
Thus far, we have focused on the segmentLgfthat We also expect thaty, may intersect the seb of stable
escape the complex. The question remains: How do the episslands. Each such intersection will produce an open segment
trophes influence the points that survive and never escapes? £, which does not escape, bounded by surviving end
Jung and Scholz observed that the stable manifolds of all thpoints which are part of the shoreline 8f These are the
bound orbits(periodic and aperiodjcgive rise to a Cantor only generic intervals of’, known to us that do not escafje.

D. Epistrophic fractals

set of singularities for a scattering functihwe show that The Epistrophe Theorem yields specific results about the
the Epistrophe Theorem itself directly leads to a Cantor sestructure of the set; of surviving points ofL,. The set of
within the set of surviving points. escaping points is denotdd (See Fig. 8. Since each escape

Obviously any point inside a stable island survives. Ac-segment is open, the sBtis also open® The setS;, being
cordingly, we define thetable domain So be the union of everything not ink, is closed(and hence compact
all open disks each of which contains no escaping points. We defineS to be the interior of the séir; that is,S is
The setS is an open set in the plane, containing the interiorsthe union of all open sets iy . As noted earlier, generically
of all the stable islands. Any point i is stably survivingin S consists entirely of points in the interior of stable islands.
the sense that any sufficiently small displacement of théAny surviving point not inS we put in a set denoteld, soF
point still results in survival(By definition, S contains all  contains whatever points af, survive, other than open in-
stably surviving pointg.Continuity guarantees that points on tervals; all points inl" are unstably surviving. The sétis
the boundary of (the “shoreline” of the stable islanglglso  constructed by the following process. After a finite number
survive. However, they aranstably survivingn the sense of iterates of the map, a finite number of escape segments
that a small perturbation can cause them to escape. will have been removefassuming thail, is analytig. Be-

There are other sets of unstably surviving points in theween these escape segments are intervals that have managed
complex besides the shoreline of the islands of stability. to survive forn iterates. As we continue to iterate the map,
The X point zy is unstably surviving(2) Many unstable pe- we remove subintervals of these surviving intervals. In the
riodic orbits are embedded in the chaotic sea surrounding thiémit, if there are any surviving intervals, we put them into
islands of stability.(3) There may be entire curves of neu- the setS. What remains id". This is very much like the
trally stable periodic orbits(4) Each unstable periodic orbit construction of the Cantor middle-third set. In fact, we dem-
has stable manifolds which do not escaff®.There may be onstrate in the following thal is atopological Cantor set.
Cantori of surviving points in the chaotic sea; a Cantorus is A topological Cantor set is any set which is homeomor-
an invariant Cantor set which is the remnant of a dissolvegbhic to a subset of the real line and which is compaet,
KAM torus.2” (6) There are chaotic trajectories that wanderclosed and bounded perfect (i.e., containing no isolated
about in the chaotic sea but never escape. There might bminty, and totally disconnected(i.e., containing no
other types of unstably surviving points which we have omit-intervalg.>! All Cantor sets are homeomorpHimpologically
ted here. equivalent to each othet! so when thinking about the to-

The line of initial conditionsZ, runs through the com- pology of Cantor sets, it is sufficient to imagine the middle-
plex and may intersect some of the above-mentioned sets tiiird Cantor set. Cantor sets may differ in their metric struc-
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ture, that is, in the lengths and separations of the segmengpistrophic self-similarity in Sec. IllC and becaukes a
that are deleted to form the set, and different metric strucCantor set, we call’ an epistrophic fractal
tures will in general result in different fractal dimensions of
the set.
We assume in the following that, is nowhere tangent [V. DISCUSSION AND FUTURE RESEARCH
to the stable manifold(The results can be modified to ac-

count for such tangencies, but it would obfuscate our discus- . The Eplstrophe. Theorem predlcts the existence .Of an
sion) The setl is a Cantor set because it satisfies the thre@p'StrOphe converging geometrically upon the end point of

necessary requirementgl) It is closed and bounded, i.e., ﬁny_esc??: segment; it aIsp ;:haract;arlzes thte. asympttgnc be-
compact(by its definition). (2) It is totally disconnected, i.e., avior ot the convergence in terms of geometric quanties

contains no intervalgsbecause they have been explicitly ex- agd )i hHowever, T‘f;”e r? f obur 'pres:/lnt :esu:tsblsay ané/thlngt
cluded. (3) It is perfect, i.e., contains no isolated points. The 200Ut NOW an epistrophe begins. Vost notably, we do no

third assertion follows from the Epistrophe Theorem. If therefr.e?'cgthe |;cera;[_e att WQ:ChI an tehp|strophe st?_rts, 2_”? we cer;
were an isolated surviving point, then directly on its right ainly do not estimate the lengins or separation distances o

. the early escape segments.
there would have to be @onnectegiopen interval of escap- . .
. . . o ! To understand the early behavior of an epistrophe, we
ing points. But any such interval must lie inside a single

|Hust look at the global topology of the tangle, which is the

end point of that escape segment and an intersection betweell < of the following paper. In that paper, we prove that

£, ands (which is transverse by assumptjofiherefore, the another pattern appears in the escape-time plots: the first seg-

point must have an epistrophe converging upon its left sidement €i+a Of an epistrophe is spawned at some number of

which implies that the point is in fact not isolated lteratesA later than the segmert upon which the epistro-
he f Fis th | fth ' phe converges(This fact was observed by Tiyapan and
The fractall” is the mutual boundary of the setsandk. 5 ™ by Jung and co-workérs®’ for certain lines of
Topologically, the boundary of a sét is the closure olU o 2 . . . ;
(i.e., the smallest closed set containldy minus the interior initial conditions in scattering problemsThis pattem is
0]; U (i.e., the largest open set containeduij. By definition clearly visible in Fig. 2 withA=6. The pattern follows from
Fi th. b q 9 & pW thaf i thm by d F‘, the fact that the topological structure of the map forces the
belzau:e glrj]; S(?i/n? |iTF mt?stseheeweaa I;oin? irg]ugrbei‘trélrc';l; existence of a certain minimal required set of escape seg-
i ments; this minimal set can be shown to have the stated
close to it, otherwise it would be in the interibrof S;. We ; - .
can now summarize the situation as follows: insid; the Com[ecurswe pattern, fan; sufficiently large. Typically there are
lex, the line of initial conditions is artitidned into three additional escape segmertsirophes not predicted by the
gets:(l) the setS of all open surviving ir?tervals(z) the sefi pattern; some of these unpredicted segments are marked by

£ all ing int | thei twal bound asterisks in Fig. 2. Nevertheless, the minimal set seems to
orafl open escaping intervais, a¥®) their mutual boundary characterize the early structure of the escape-time plots re-
I; this boundary is a Cantor set.

markably well. However, based on numerical evidence, we

|__|k<_a al Cf:arr:tor setsEbTan Ze. divided _|bn|to two su_ll.:ﬁets believe that for large enough iterate number, the minimal set
consisting of theaccessibleand inaccessiblepoints. The iy eyentually be overwhelmed by the unpredicted seg-

fractaIlF‘ is a line segment Wit_h a countable number of OP€Mments, both in total number at a given iterate and in total
intervals _removedz some be_mg escape Seg”je“ﬂ@ ahd measure(Notice that the unpredicted segments in Fig. 2 tend
some being(generically mtengrs o_f islands inS. Ap end to be the longer segments at high iterate nunber.

point of an escape segment is said to be accessible fom — , f,1re papers, we shall also present theorems concern-
because there exists a path beginning and terminating on 4 the winding numbefFig. 2), and we shall show how all
the end point without encountering any other point outside ot age concepts describe the ionization of a hydrogen atom
[; we denote the countably infinite set of points accessiblebmced in external electric and magnetic fields.

from E by Ag. Similarly an end point of a segment this We conclude by noting that standard references on
said to be accessible froffy and we denote the set of such f,-ta162 discuss at least three distinct types of self-

points byAs. The seths may be countably infinite, finite, or - gimijarity: (1) regular self-similarity, as for the Cantor

empty. Together\e and As form the countably infinite set  iqqje-third set or the Koch snowflaké2) asymptotic self-
A=AgUAs of accessible points df (i.e., the set of all end  gimjjarity, which characterizes, for example, sequences of
points of deleted intervals, whether in or 5). Since the  ,eriog-doubling bifurcations(3) statistical self-similarity,
fractal I is uncountably infinite, most points ifi lie in the  \yhich might describe coastlines or clouds. To this list we add
set, denoted, of inaccessible points. “epistrophic self-similarity,” in which at all levels of resolu-

Every point ofAg lies on the stable manifold and hence o there are asymptotically similar sequences, but addi-
has an epistrophe converging upon it. However, the points of, ) unpredicted segments may also persist.
Ag generically do not lie on the stable manifold, but are

rather part of the shoreline &. So we do not expect epis-

trophes to converge upon the end points of a surviving S€0A CKNOWLEDGMENTS

ment of £y. (This is readily apparent in Fig. 2Neverthe-

less, the epistrophes are dense in the fractal, or more pre- The authors would like to thank Professor Nahum Zobin

cisely, the sef\¢ is dense inl. for many useful discussions. This work was financially sup-
Because the escape segments exhibit what we callggbrted by the National Science Foundation.
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APPENDIX A: A FAMILY OF SADDLE-CENTER MAPS

We define a map\1(qy,p1)=(0z.P2) by

02=0y+ %, (Ala)

P2=pP1— %, (Alb)

q=(01+0,)/2, (Alo)

p=(p1+p2)/2, (Ald)
where the “Poincargenerator’G(q,p) is>>>*

p2

G(a,p) =75~ +V(a) (A2)
and where

V(q)=—secliq)—fq (A3)

Mitchell et al.

wherea is the Liapunov factor of th¥ point. The coordinate
change and the function® P) are power series that have a
nonvanishing radius of convergence about ¥@oint. The
function f depends only on the product Q times d&hd
f(0)=0.

A corollary of Moser’s theorem is that the mappi(igfl)
preserves the product

Q'P'=QP, (B2)

so the hyperbolic curve® P= constant are invariant sets un-
der the map. We choose an open Bethat is convex in the
PQ coordinates, that contains the point of M, and in
which the normal form converges.

2. Convergence factors are invariant under
differentiable mappings

Consider an infinite sequence of poizs=(q,,p,) that
lie on a differentiable curv&€ and that converge geometri-

is a local potential well that goes to infinity on the left but cally to a poinz.  C; i.e., the Euclidean arclengty,, mea-
only has a potential barrier on the right. It can be shown thagured along” betweenz, andz. , satisfies

this map is canonical and that it is well defined on the entire

phase plane.

A fixed point of the map corresponds to a stationary

point of G(q,p), wheredG/dp=dG/dq= 0. The fixed point

is stable or unstable according to whether the Hessian det

minant D= (9°G/dp?)9°Glq?— (9°Gldqap)? is positive
or negative’>>* Accordingly, the magAl) has exactly one

stable and one unstable fixed point, located at the local min

mum and the local maximum &f(q). The eigenvalues of a
fixed point are given by

(A4)

For the unstable fixed point of the m&pl), we have the
explicit formula

m 2

J=1-4f2, (A5b)

from which the Liapunov factom=«a,>1 can be com-
puted.

(Aba)

APPENDIX B: PROOF OF THE EPISTROPHE
THEOREM

1. Normal form near an X point

We will need the following “normal form” theorem
proved by Moser®
Theorem 2 (Moser, Ref. 53: In the neighborhood of an

lim d,8"=K,

n—o

(B3)

for someB>1 andK>0. We call 8 the convergence factor
I?_or any map of the plangV, which is differentiable and
ocally invertible aboutz,, define D, as the Euclidean

arclength betweerZ,=AMz,) and Z,=Mz.), measured

iz_alongJ\/(C).

Lemma 1: The convergence factBris invariant under
the mappingV, that is,

lim D,8"=JoK>0.

n—oo

(B4)

Here Jo=|Jt| where J=JA7dz], is the2x 2 Jacobian ma-

trix evaluated az=z, andt is the unit tangent to the curve
Catz,.

The notation|| denotes the standard Euclidean vector
norm. The proof of this lemma is a simple exercise.

3. Iterates of a curve intersecting the stable manifold
approach the unstable manifold

Consider any differentiable cuné having a transverse
intersection with the stable manifolfl of M at a pointr
=(qp,pg) having canonical length coordinate,=s(rg)
along S; we assumé’, does not intersect the segment®f
joining zx to ry (Fig. 9. The differentiable curveC;
=M(Cy) intersectsS at a point r;=(qq,p1)=M(rg),
which is closer to th& pointzy . By Eq.(2) r4 has canonical
length coordinate;=s(r,) =rq/a. Applying M repeatedly,
we obtain an infinite sequence of curygsthat intersectS in
a sequence, converging geometrically tay with conver-

X point of an analytic area- and orientation-preserving map gence factor equal to the Liapunov factarr,a"=ry#0.

of the plane(q,p)—(q’,p’), there exists an analytic area-
preserving change of coordinatég,p)—(Q,P) that places
the map into the normal forriQ,P)—(Q’,P") satisfying

Q' =Qla+f(QP)], (Bla)
P'=P/[a+f(QP)], (B1b)

The curve<’, “approach the unstable manifold” in the
sense that every poi, on U/ is the limit of a sequence of
pointsz, e C,, converging geometrically with factas.

Lemma 2: For any differentiable curég passing trans-
versely throughS at a pointry and for any differentiable

curve C passing transversely through at a pointz,, the
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i CO

E‘I’

Cn+1
R-n+1 Cn+2
Rito

zx

FIG. 9. This diagram, used for proving Lemma 2, depicts the neighborhood

of zy (the origin in normal-form coordinates@,P). The dashed lines are
the invariant hyperbolas of the map. The curégs C, ., andC, , are the
nth, (n+1)th, and O+2)th iterates ofC,, respectively. Similarly, the
points Z,, Z,;1, and Z,;, lying on C are thenth, (n+1)th, and @
+2)th iterates of the pointg°, z°,,, andz?, ,, respectively. The unla-
beled dots represent intermediate iterates of these points.

curvesC,=M"(Cy) and C intersect for all n large enough.
We further assumé€, does not intersect the segment ®f

joining zy to ry. We then ChOOS_En to be the point irCnOE
closest taz;, (as measured alon@). The sequencg, satisfies

lim z,=z,, (BS)

n—o

lim |z,— 7,/ a"=A(z,,1)r,#0,

n—ow

(B6)

where« is the Liapunov factor oty and A(zu,f) is a func-
tion that, for a given map\, depends only on the intersec-
tion pointz, and the tangenf to the curveC at z,.

Proof: First suppose;, andr lie within the domainD
in which the normal form applie@\ppendix B 1. Within D,
we use the normal-form coordinate®,[P), in which case,
andr are represented b¥;,=(Q,,0) andRy=(0,Ry). By
Lemma 1, if we prove Lemma 2 in theQ(P) coordinates
then we have proved Lemma 2 in the origingl§) coordi-
nates.

The pointZ,=(Q,,P,) in C,NC is the nth iterate of
some poinZ%=(Q%,PY) in C,. (See Fig. 9. Thus, iterating
Eqg. (B1), we see that

Qn=QY a+f(Q,P)I",
Py=Pala+f(QnPy)]™"

(B7a)
(B7b)

Near the poinR, the curveCy is the graph of a differentiable
function P=Cy(Q), and similarly, near the poinZ,;,, the
curveC is the graph of a differentiable functio@=C(P).
Combining this with Eq.(B7), we find that forn large
enoughP,, must satisfy

C(Py)=QY a+f(P,C(P.)I", (B8a)

Pn=Co(QN[a+f(P,C(P))] " (B8h)

Geometry and topology of escape. | 889

Solving forQﬂ in Eg. (B8a) and inserting the result into Eq.
(B8h), we find

Pn:Gn(Pn)[a+F(Pn)]7na (89)
where

Gn(P)=Co(C(P)[a+F(P)]™, (B10)

F(P)=f(PC(P)). (B12)

The functionsG,(P) and F(P) have the following proper-
ties: (1) G,(P) and F(P) are well defined, differentiable
functions in the neighborhood d®?=0 (for n sufficiently
large; (2) F(0)=0; (3) G,(0)# 0. Observe that EqB9) is
an implicit expression foP,, .
Lemma 2a: For each hchoose B> 0 to be the smallest
real solution to Eq. (B9). Then for n sufficiently lard®, is
well defined andim,_,..P,a"=R;.

Proof: Define E,(P)=P[a+F(P)]"/G,(P)—1. Then
P, satisfies Eq(B9) in the neighborhood of 0 if and only if
it is a zero ofE,. Let e>0 be given. Recalling thaE(0)
=0 anda>1, we assume that is small enough so that

+F(e)>1 andE(e) is well defined. This implies

lim G,(e)=Cy(0)=Ry>0, (B12)
n—oo
and furthermore,
. . atF(e)]"
Iim E (e)=lim————=+w (B13)

n—o n—o RO

Combining this result with the fact th&,(0)=—1 [since
G,(0)#0], we see that there must be a zeroefbetween
0 ande for all n large enough. Since>0 was arbitrarily
small, we can construct a sequerieg of zeros ofE,(P)
such thatP,, goes to 0. We choose the sequeRgeo consist
of the smallest positive roots &, .

Next, notice that

lim nP,=lim n[a+F(P,)] "Gn(P,)

n—o n—o

=lim n[a+F(P,)] "Ry=0,

n—o

(B14)

where the first equality follows from EdB9), the second
from Eq.(B12), and the last front(0)=0. Finally,

lim In(P,a™)=InRy— lim nIn[1+F(P,)/«]

n—oo n—o0

1dF
:In RO__

o dpP lim nP,=InR,,

P=0 N—®
(B15)

where the first equality follows from Eq$B9) and (B12),
the second by expanding(P,,) aboutP,=0, and the last
from Eq.(B14). This completes the proof of Lemma 2a.

The sequenceP,, yields the sequence of pointg,
=(Qn,Pn)=(C(P,),P,) in the statement of Lemma 2.
Equation(B6) in the normal-form coordinates follows imme-
diately from Lemma 2a,
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lim |Z,—Z,)a"= lim[P2+(Q,— Q,)?]Y2a" Lemma 4: For any differentiable curv&, passing trans-
n—sa n—oo versely througti/ at a pointz,, the capture zones Cinter-

- sectL, for all n large enough. We choosg to be the con-

=A(1)Ro#0, (B16) nected component of @& L, closest toz, (as measured

along £y). The ¢, converge uporg, with the Euclidean

whereA(t) =[ 1+ (dC/dP|p_)2]"2 obviously depends only lengthr.. of e, satisfying
= n €n

on the tangent to C at the intersection poinZ,,= (Qy,,0).

Lemma 1 shows that the transformation back to the original  |im )\nQHZA(ZM,E)S(Cl)qﬁo' (B19)
(g,p) coordinates introduces a Jacobian fa¢t®pendent on n—oo
z, andt) which can be absorbed into a né¥(z,,t). where C,) is the canonical length of th& boundary of G

At this point Lemma 2 is proved providegj, andr, lie  [Eq. (5d)].
within D, where the normal form is valid. To extend the So long asp(z,)#0, Lemmas 2—4 hold when the Eu-
theorem to arbitrary, on the stable manifold and arbitrary cjigean length is replaced by the measugedefined by Eq.
7, on the unstable manifold, we use the following “forward- (6), except thai\(z,,,f) is multiplied byp(z,). In particular,

backward mapping trick.” Eq. (B19) vields Eq.(8

First suppose,, lies within D but r, lies outside ofD. a-(B19y a-(83)
We apply M a finite number of times until ry lies within lim Iu,na'n:[A(Zu,f)p(zu)]s(cl)EK’ui 0, (B20)
D, and then we repeat the preceding argument. n—

On the other hand, if, lies outside ofD we apply the
inverse mapM " to z, j times untilz,'=M ")(z,) lies Betweene, ande, . ; lies a gap onC, with measurey,, .
within D. Then by thelpreceding argument, we identify theAppIying Lemma 3 toCo=Cp, andCy=M(Cq ) vields Eq.
sequence of pointsz;lj eChjNM ~1(C) converging to (8b) ! 0
z,'. We map this sequence forwajdimes to arrive at the '
sequencez, e C,NC converging toz,. By Lemma 1, the lim yha"=[A(z,,t)p(z,)]s(E;)=K,#0, (B21)
convergence factor remaing we also acquire a Jacobian n—e
factorJ, from the transformation, but it will depend only on from which also follows Eq(9a),
z,andt and can be absorbed into a néWz,,t). QD SC) sCo K

Note thatA(zu,f) in Lemma 2 doesot depend on the |imﬁ: T o __e
curveCy. The following corollary exploits this fact. e ¥n  S(E1)  S(Eo) K,

Lemma 3: For any two differentiable curv€g andCy,
each passing transversely throughat the pointsr, andr
#rq, respectively, and for any differentiable cur¢gassing lim 8,a"=[A(z,,1)p(z,)]s(P;)=K s#0, (B23)
transversely throughl/ at a point z,, the curves(_, n—o
=M"(Co) and ;=M "(Co) both intersect for all n large  \heres,, is the measure between andz,. From Eq.(B23)
enough. We further assundg (or C}) does not intersect the fgllows Eq. (9b),
segment of joining zx torg (or rg). We choose, (or z) to

g J gzxtorg (orry) n (Or Z)) un S(C) S(Co K,

where u,, is the measure of, .

x#0. (B22)

Similarly, Lemma 2 applied t@,=Cp, implies Eq.(8c),

be the point inC,NC (or C;NC) closest toz, (as measured li = = —E=g=+0. (B24)
alongC.) The sequences, and z, satisfy e GV CORN
lim z,= lim z,=2z,, (B17) The Epistrophe Theorem requires studying intersections
n—sc n—so of the pre-iterates dE with £;. In the preceding results, we
. R have studied intersections of the forward iterate€gfwith
lim [z,—z;|a"=A(z,,1)do#0, (B18)  L,. One may, of course, translate between these two view-
n—e points by replacing\ with M 1.
where ¢ is the canonical length betweeg and rj (mea- The final equality for¢ follows from
sured alongs), « is the Liapunov factor ofy, and A(z,,t) o aty
is the same function as in Lemma 2 u(Py) = 2 [U(Co)+U(Eg)a a "=u(Cy) 1
n=0 -
(B25)
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