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Abstract – We experimentally investigate flow of quasi–two-dimensional disordered foams in
Couette geometries, both for foams squeezed below a top plate and for freely floating foams
(bubble rafts). With the top plate, the flows are strongly localized and rate dependent. For the
bubble rafts the flow profiles become essentially rate independent, the local and global rheology
do not match, and in particular the foam flows in regions where the stress is below the global
yield stress. We attribute this to nonlocal effects and show that the “fluidity” model recently
introduced by Goyon et al. (Nature, 454 (2008) 84) captures the essential features of flow both
with and without a top plate.

Copyright c© EPLA, 2010

Introduction. – Foams have recently attracted atten-
tion as model systems for disordered, complex fluids [1].
The elementary building blocks, the bubbles, obey simple
laws: when compressed, their repulsion is harmonic [2,3]
and when sliding past other bubbles or boundaries, they
experience a velocity-dependent drag force [4–10].
Collectively, the conglomerate of bubbles that makes

up a foam exhibits all the hallmarks of complex fluids
—foams exhibit shear banding, a yield stress and shear-
thinning [11]. The latter are often modeled by a Herschel-
Bulkley constitutive equation where the stress τ takes the
form τ = τy + kγ̇

β , where τy, k, β and γ̇ denote the yield
stress, consistency, power law index and strain rate [11].
The rheology of foams has mainly been investigated

in three dimensions [1]. While the three-dimensional case
is perhaps more realistic, the opacity of foams inhibits
connecting the bulk behavior with the local behavior.
Therefore, recently a body of work has focused on the
shear flow of two-dimensional foams. In this case the bulk
response can easily be connected to local quantities such
as velocity profiles and bubble fluctuations [12–14].
The flow of two-dimensional foams has been studied

extensively in Couette geometries. For example, Dennin
and co-workers have sheared (freely floating) bubble rafts
in a Couette geometry with a fixed inner disk and
a rotating outer cylinder [15,16], while Debrégeas has
confined foam bubbles in a Hele-Shaw cell and rotated

(a)E-mail: g.katgert@ed.ac.uk

the inner disk, keeping the outer cylinder fixed [17].
In both cases, localized flow profiles —by which we
mean velocity profiles that show fast decay away from
a driving boundary— were found. There has been no
clear consensus, however, on the cause of flow localization
in these systems: while the (geometry-induced) decay
of the stress away from the inner cylinder may cause
localization, a confining glass boundary, by introducing
additional drag forces on the foam, can have the same
effect [12,18–20]. Thus the question of what causes flow
localization remains, and differing opinions abound in the
community [21–23].
In this letter, we address this question by combining

measurements of the flow profiles of two-dimensional
disordered foams in Couette geometries with and without
a top plate and for a wide range of driving rates with
independent rheological measurements. When the top
plate is present the flows are rate dependent, while the flow
profiles become essentially rate independent in absence of
this plate —in both cases, the flow profiles are localized.
A recent model, developed by Janiaud et al. and

Katgert et al. successfully predicts velocity profiles
in linearly sheared monolayers [12,24] by balancing a
Herschel-Bulkley expression for the stress with a drag
force due to the top plate. Here we show that this model
unexpectedly breaks down in Couette geometries [19].
This is seen most dramatically in the case without a
top plate, where, due to the presence of a yield stress,
Herschel-Bulkley rheology predicts a range of driving
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Fig. 1: (Color online) (a) Schematic top view of one Couette cell
used in this experiment. The inner disk has radius ri = 105mm
and the gap has width 85mm. The outer cylinder, reservoirs
and supports for the glass plate have been milled into a PMMA
block. (b) Side view: the reservoirs and the bounded area are
connected to keep the region underneath the glass plate from
draining. The motor is connected to the inner cylinder through
the glass plate. (c) Photograph of the experimental setup.

rates for which the flow velocity vanishes at a point within
the gap. In these cases, we observe instead a velocity
profile that decays to zero only at the outer boundary.
Thus, the material appears to flow below the yield stress!
Moreover, the Herschel-Bulkley constitutive relation fails
to capture the observed rate independence.
Thus, the Herschel-Bulkley model fails to capture the

flow, and we show that this breakdown reflects nonlocal
flow behavior. By applying the nonlocal model recently
introduced by Goyon et al. [25,26], which contains a finite
cooperativity length ξ that encodes the spatial extent of
plastic rearrangements, we find that we can describe all
features of the flow of foam in Couette geometry.

Experiment. – Our experimental setup consists of a
500× 500× 50mm square PMMA block, into which the
outer cylinder, a reservoir and supports for a removable
glass plate are milled, see fig. 1. The boundary of the
reservoir acts as the outer cylinder (of radius ro = 190mm)
and is grooved with 6mm grooves. On the glass plate
of 405× 405× 12mm, a casing for a stepper motor is
fixed by UV curing glue. The stepper motor (L-5709 Lin
engineering) is connected to an inner cylinder of ri =
105mm radius through a hole in the glass plate. The inner
cylinder is grooved like the outer cylinder.
A bidisperse foam is produced by filling the reservoir

with a soap solution and bubbling nitrogen through the
fluid (viscosity η= 1.8± 0.1mPa · s and surface tension
σ= 28± 1 mN/m) [12]. After thorough mixing, we obtain
a bidisperse, disordered foam monolayer. The resulting
bubble sizes are d1, d2 = 1.8, 2.7mm. The glass plate, with
the inner driving wheel attached, is carefully placed on
top of the foam and subsequently, the foam is allowed
to equilibrate for a considerable time. Approximately
40 bubble layers span the distance between the inner
wheel and the outer cylinder. To perform bubble raft

Fig. 2: (a) Raw image as obtained by CCD camera. The local
curvature is extracted from the curvature at the inner disk and
the outer cylinder, and for every r we define an arc that we
match to pixels in the image. If we plot these arcs as straight
lines we obtain the image with correction for curvature (b). We
compute cross-correlations between subsequent frames on these
straightened image lines.

experiments, we place spacers between the supports and
the glass plate, thus obtaining a considerable gap between
the liquid surface and the glass plate.
The foam is lit laterally by 4 fluorescent tubes and

images are recorded by a CCD camera (Foculus FO
432BW), equipped with a Tamron 280–300 telezoom lens.
The bottom of the reservoir is black to enhance contrast.
The frame rate is fixed such that the angular displacement
of the inner cylinder is fixed at 1.12× 10−3 rad/frame.
We record only during steady shear, ensuring that the
foam has been sheared considerably before starting image
acquisition.
We calculate velocity profiles across the gap between

inner and outer wheel by cross-correlating arcs of fixed
radial distance in subsequent frames over a large angular
region. This approach forces us to calculate velocity
profiles on curved image lines. However, by defining circu-
lar arcs and identifying these with the appropriate pixels,
this can easily be done, see figs. 2(a), (b). We compute
averaged velocities over between 2,000 and 10,000 frames,
depending on the experiments, to enhance statistics. We
assume the accuracy of the profiles to be at best 0.01
pixel/frame and do not consider velocities that fall below
this threshold. We check that coarsening, segregation,
coalescence and rupturing are absent in the runs with a
top plate, whereas we do observe rupturing in the bubble
raft experiment: bubbles will pop after approximately 112
hours. We merely content ourselves with the absence of
holes in our foam during the latter experiment, which is
achieved by loading the Couette cell with a surplus of foam
far away from the imaging region.

Results. – In fig. 3(a) we present data for the shear
flow of a foam covered with a glass plate, at 6 different
driving velocities vi := v(ri) spanning 2.5 decades. We
have rescaled the velocity profiles with vi to highlight
the qualitative changes and we have rescaled the radial
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Fig. 3: (Color online) (a) Velocity profiles for the two-
dimensional Couette flow of foam with top plate. We see
strongly localized velocity profiles that furthermore exhibit
rate dependence: the faster the driving velocity vi, the more
localized the profiles become. (b) Velocity profiles for the two-
dimensional Couette flow of foam without top plate. We see
approximately rate-independent velocity profiles, with local-
ization that is solely due to the curved geometry.

coordinate with the inner radius ri, which characterizes
the curvature of the experimental geometry and, in the
case without a top plate, sets the decay of the stress
profile. We observe that the shape of the velocity profiles
depends on the exerted rate of strain; the runs that were
recorded at the highest driving velocity exhibit the most
localization.
The observed rate dependence is in accordance with our

previous results [12], obtained for the linear shear of two-
dimensional foams bounded by a top plate, which also
displayed rate-dependent localization in the presence of a
top plate. From these results, we can infer that again the
balance between internal dissipation in the foam and the
external top plate drag force leads to increased localization
at increasing shear rates. Note that our results are in
strong contrast with the findings by Debrégeas et al. [17],
where rate-independent profiles were found. As in [17], the
decay of the velocity profile is approximately exponential
(semi-log plot not shown).
We now turn to Couette shear of a freely flowing foam

without drag from the top plate. Despite the limited
stability of the bubble raft, we can shear the foam at the
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Fig. 4: (Color online) (a) Data from liquid-air Couette geo-
metry with inner disk of radius ri = 25mm driven by rheometer
head. Averaged and normalized velocity profiles for a range of
driving velocities vi at the inner disk. Dashed lines: flow profiles
for a fluid obeying a Herschel-Bulkley constitutive relation. The
inset shows the same data on a semi-log scale: the highlighted
area is below the noise threshold. (b) Flow curve corresponding
to the velocity profiles shown in (a). Black squares: Shear stress
τi vs. strain rate γ̇ measured at the inner disk. Red curve: fit
to a Herschel-Bulkley constitutive relation τ = τy + kγ̇

β with
τy = 0.42 Pa, β = 0.36, and k= 0.7 Pa · s1/β .

same shear rates as in the experiments with a bounding
glass plate, except for the slowest run. Results are plotted
in fig. 3(b): within experimental uncertainty the profiles
exhibit rate-independent velocity profiles. We observe that
the velocity profiles are still reasonably localized.
Earlier studies of Couette flow of foams [16,21,23,27,28]

claim to observe a discontinuous transition between a
flowing and a static part, as highlighted by a kink in the
velocity profile. We observe no such transition; in fact, we
do not observe a decay to zero velocity at any point within
the gap which would indicate the presence of a yield stress
—that is why we turn our attention to rheometry. We
have not seen packing density gradients associated with
the flow localization, and gradients are smooth enough
(except very close to the wall), to exclude effects due to
the discrete nature of the material [29].

Rheometry. – We now directly investigate the
applicability of a local rheology for the flow of a bubble
raft, i.e. in the absence of a top plate. To do so, we have
performed additional measurements by simultaneously
imaging the velocity profiles and measuring the bulk
rheometrical response of a two-dimensional bubble raft
in a Couette geometry. This allows us to investigate the
local rheology of the foam in the spirit of [25,26] and
connect bulk rheometry with local measurements, as well
as model solutions.
We shear the bubble raft in an Anton Paar DSR 301

rheometer. We employ a Couette geometry, now with inner
disk and outer ring radii of ri = 25mm and ro = 73mm.
We impose five different strain rates spanning two
decades and measure the resulting averaged torque, while
simultaneously imaging the bubble motion. The measured
flow profiles and rheology are shown in fig. 4. Note that,
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to within experimental scatter and similar to the Couette
flows of bubble rafts with the larger inner disk, shown in
fig. 3(b), the profiles are rate independent.
An advantage of omitting the top plate is that we

can determine the stress τ(r) from the torque on the
inner disk, which is connected to the rheometer head.
When there is no top plate, the shear stress satisfies
1
r2
∂
∂r
(r2τ) = 0, hence τ(r) = τi(ri/r)

2. From the measured
velocity profile, the local strain rate can be obtained as

γ̇ = ∂v(r)
∂r
− v(r)

r
. Figure 4(b) plots stress vs. strain rate at

the inner disk. The experimental stress-strain rate data
is consistent with a Herschel-Bulkley constitutive relation
with a yield stress of τy = 0.42Pa, rheological exponent of
β = 0.36, and consistency k= 0.7 Pa · s1/β . This flow curve
is consistent with earlier measurements [12,13].
Equipped with a constitutive relation, we can now

calculate the expected flow profiles for given experimental
parameters. We solve for the flow profile v(r) subject
to the imposed driving velocity v(ri) = vi and no-slip
boundary conditions v(ro) = 0 at the outer wall; results
are plotted in fig. 4(a). The Herschel-Bulkley flow profiles
are noticeably more shear banded than the experimental
profiles and, unlike the data, display rate dependence.
Flow ceases at the point where the stress τ(r) decays below
τy; this occurs at a position within the gap and is clearly
visible in fig. 4(a). Therefore the flow profiles predicted
on the basis of the constitutive relation determined from
rheometry and imaging fail dramatically. We now show
that this departure is due to nonlocal rheology.

Nonlocal effects. – Because we access velocity profiles
in addition to rheometric data, we know the mean strain
rate and mean shear stress at every point within the gap,
for the case without a top plate. It is thus possible to
make parametric plots in which the radial coordinate is
varied, as shown in fig. 5(a). This is equivalent to plotting
a constitutive relation for each radial coordinate within
the gap.
Figure 5(a) demonstrates two things. First, the absence

of a collapse of the parametric plots for the five different
runs clearly shows that there is no local rheology —for a
single given local stress, a range of local strain rates can
be obtained. If the rheology were local, all data would
collapse to a master curve, e.g. a Herschel-Bulkley or
other constitutive relation. Second, we find that there
can be flow (γ̇ > 0) in the wide-gapped Couette geometry
for shear stresses below the rheometrically determined
global yield stress, τ(r)< τY . This cannot occur within a
material that is locally described by the Herschel-Bulkley
constitutive relation. Each parametric curve terminates on
the stress-strain rate curve of fig. 4 (inset) because the
curve was measured at the inner wheel.
We will now show that a simple nonlocal model recently

developed by Goyon et al. can capture the flow of a bubble
raft. This nonlocal model proposes that a material’s local
propensity to flow, characterized by the fluidity, can be
influenced by flow elsewhere in the material.

Model. – The key ingredient of the nonlocal model
is the position-dependent inverse viscosity, or “fluidity”,
f := γ̇/τ , a measure of the material’s tendency to flow.
To obtain an equation for the fluidity, one can argue as
follows. A system with homogeneous stress and strain rate
is characterized by the “bulk fluidity”

fb :=
γ̇HB

τ
=
1

τ

(
τ − τ̃y
k̃

)1/β̃
Θ(τ − τ̃y). (1)

Θ(x) is the unit step function. The tilde indicates that
parameters may, in principle, differ from the “wall consti-
tutive relation” of fig. 4 (inset). The key idea is that,
in the presence of inhomogeneity, the system “wants” to
achieve a fluidity f = fb everywhere, i.e. to obey local
rheology, but is forced to pay a price for spatial variations
in f . Writing in one dimension for simplicity, these ideas
can be expressed very generally in integral form: fb(x) =∫
dx′K(x, x′)f(x′). The kernel K(x, x′) =K(x−x′) must
be a symmetric function of the distance between two
points.K must further satisfy

∫
dsK(s) = 1 to recover the

bulk fluidity fb in a homogeneous system. Taylor expand-
ing f in the integrand to second order in s yields:

fb(x) = f(x)− ξ2 ∂
2

∂x2
f(x). (2)

The parameter ξ2 :=− ∫ ds s2K(s) sets a length scale,
termed the cooperativity length, that characterizes non-
local effects1. Here, as in [25], we take it as a fitting
parameter.
Note that the diffusive term in eq. (2) is in some

sense the simplest possible realization of a nonlocal model
for the fluidity. For the Couette geometry we employ

cylindrical coordinates and let ∂
2

∂x2
→ 1
r
∂
∂r
(r ∂
∂r
).

Boundary conditions on the fluidity are required: we
impose fi = τ

−1
i [(τi− τy)/k]1/β at the inner wheel, with

parameters from the wall constitutive relation, and fo = 0
at the outer ring. Parameters in the bulk fluidity, eq. (1),
must also be specified. In the experiments on emulsions
of [25], where it was possible to access these parameters
independently, it was found that τ̃y = τy and β̃ = β. For

smooth walls k̃= k, while for rough walls k̃ was smaller by
roughly a factor one half. For the results we present here,
varying k̃ over this range does not substantially alter the
quality of agreement between theory and experiment, both
for flow curves and velocity profiles. Hence, we set k̃= k
for simplicity, i.e. we take the bulk and wall fluidities to be
identical. Once eq. (2) has been solved for f , the velocity
profile can be integrated by assuming no slip, v(ro) = 0, at
the outer ring.

Flows without a top plate. For the bulk fluidity we use
the Herschel-Bulkley parameters determined by fitting to
the rheometrical data in the inset of fig. 4. We then vary ξ

1The integral
∫
ds s2K(s) can be positive or negative. Real values

of ξ correspond to the negative case. Imaginary ξ tends to produce
nonmonotonic velocity profiles.
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Fig. 5: (Color online) Nonlocal rheology of foams. (a) Data points: local flow curves in the Couette geometry without a top
plate. The local strain rate can be calculated from the velocity profiles in fig. 4 and the stress at the inner disk known from
the measured torque. Different colors correspond to different driving velocities (legend as in (b)); for a given driving velocity,
different points correspond to different positions in the gap. Solid curve: the “wall constitutive relation” shown in fig. 4 (inset).
Dashed curves: predictions of the nonlocal model with cooperativity length ξ = 3〈d〉. We plot only the curves for the slowest
and fastest driving rates. (b) Data points: identical to the data of fig. 4 for flow without a top plate. Dashed curves: predictions
of the nonlocal model. The model yields near rate independence; the five plotted curves lie nearly on top of one another. (c)
Data points: velocity profiles for the system with ri = 25mm and a top plate. Dashed curves: predictions of the nonlocal model
for the identical set of parameters used in (b). Curves are offset for clarity.

and obtain a good match with the data for ξ/〈d〉= 3± 0.5.
As shown in fig. 5(b), the flow profiles predicted by this
model are qualitatively similar to those measured, and
show very little rate dependence. In particular, the model
correctly captures the presence of flow in regions where the
local stress is below the yield criterion of the local model;
this flow is induced by cooperative effects, apparently well
captured by the nonlocal model.
As illustrated in fig. 5(a), this nonlocal model is in

reasonable agreement with that of the measured profiles.
Both the data and the model are roughly power law
in nature, τ � γ̇0.2, although this is not exact. As a
consequence, näıvely assuming a power-law fluid (τy = 0,
β ≈ 0.2) captures the velocity profiles of fig. 4 reason-
ably well (not shown), but not the rheometry in that
figure’s inset. Only the nonlocal model resolves the
apparent inconsistency between velocity profiles and
rheometry.
Note that the nonlocal model does not capture the

upward bend in the flow curves shown in fig. 5(a), which
corresponds to regions roughly one bubble diameter from
the shearing wall where the flow gradients are small —

these are also responsible for the “misalignment” of the
predicted and measured flow profiles seen in fig. 5(b).

Flows with a top plate. Here we compare predictions
of the nonlocal model to flow in the presence of a top
plate. We assume that the wall and bulk fluidities are
unchanged from the case without a top plate and take
ξ/〈d〉= 3, the same parameters used in figs. 5(a) and
(b). We include a Bretherton wall drag Fbw = cbw|v|2/3,
where cbw = 2.7× 105 Pa ·m− 53 · s 23 has been determined
independently [12]. In fig. 5(c) we compare flow profiles
from the experiment and model. The model predictions are
in surprisingly good agreement with experimental results.
Rate dependence emerges, and the flow profiles are more
localized than in the case absent a top plate.

Outlook. – We probed the flow profiles and rheology
of two-dimensional foams in Couette geometries, both for
foams squeezed below a top plate and for bubble rafts.
Consistent with earlier experimental results in a linear
geometry [12], flows below a top plate are strongly rate
dependent. While for bubble rafts in a linear geometry one
expects and finds rate independence [18,24], this is not to
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be expected in the Couette geometry, since a combination
of a finite yield stress and a radial decay of the shear stress
suggests a rate-dependent location in the cell where the
flow ceases [23,28]. Here we do not observe this effect: the
velocity profiles for a wide range of strain rates collapse.
For bubble rafts, the local and global rheology do not

match, and in particular the foam flows in regions where
the stress is below the global yield stress. We can fit the
flow profiles of both the bubble rafts and the confined
foams by a nonlocal model that extends the measured
Herschel-Bulkley rheology with an empirically determined
length scale that captures the nonlocality.
We note that the effect of nonlocality for confined

foams is not as strong as it is for the freely floating
foams. Moreover, we suggest that the nonlocal effect would
be even less important in the linear geometry, where a
local model was found to capture the flow profiles [12].
Underlying this is that even the local model predicts no
abrupt cessation of flow in linear geometry —and it is
near such regions that the flow profiles are most sensitive
to nonlocal effects.
One open question remains. If we assume the Herschel-

Bulkley relation determined in the system with inner
radius ri = 25mm also describes bubble raft in the system
with ri = 105mm, we can attempt to describe the velocity
profiles in the large system using the nonlocal model.
We obtain good agreement for a choice of cooperativity
length ξ/〈d〉 ≈ 10, significantly larger than that in the
small system. We suggest that the radius of curvature may
influence the cooperativity length in a way not captured
in the model as presented here.
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