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We study the nonlinear elastic response of a two-dimensional material to a localized boundary force, with
the particular goal of understanding the differences observed between isotropic granular materials and those
with hexagonal anisotropy. Corrections to the classical Boussinesq result for the stresses in an infinite half
space of a linear, isotropic material are developed in a power series in inverse distance from the point of
application of the force. The breakdown of continuum theory on scales of order of the grain size is modeled
with phenomenological parameters characterizing the strengths of induced multipoles near the point of appli-
cation of the external force. We find that the data of Geng et al. �Phys. Rev. Lett. 87, 035506 �2001�� on
isotropic and hexagonal packings of photoelastic grains can be fitted within this framework. Fitting the hex-
agonal packings requires a choice of elastic coefficients with hexagonal anisotropy stronger than that of a
simple ball-and-spring model. For both the isotropic and hexagonal cases, induced dipole and quadrupole terms
produce propagation of stresses away from the vertical direction over short distances. The scale over which
such propagation occurs is significantly enhanced by the nonlinearities that generate hexagonal anisotropy.
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I. INTRODUCTION

The response of a granular medium to a localized bound-
ary force has been investigated both experimentally and nu-
merically �1–16�. Experiments have shown that in disordered
packings stress response profiles consist of a single peak that
broadens linearly with depth �2,3�. For hexagonal packings
of disks �1,2� or face-centered cubic packings of spheres
�5,6�, on the other hand, the stress response develops mul-
tiple peaks that seem to coincide with propagation along lat-
tice directions. In two dimensions, a hexagonal packing is
indistinguishable from an isotropic one in the context of clas-
sical �linear� elasticity theory �17,18�. Thus the observation
of response profiles in two-dimensional disordered and hex-
agonal packings that differ significantly on scales up to 30
grain diameters �1,2� requires consideration of nonlinear ef-
fects. More generally, the applicability of classical elasticity
to granular media is a question of ongoing research
�9,14,16,19–21�.

Classical elasticity for an isotropic medium predicts a
single-peaked pressure profile that broadens linearly with
depth �17�. Numerical results �see Ref. �12�, for example�
demonstrate responses well described by this solution in re-
gions far from a localized force in the bulk of a disordered
frictional packing with more than the critical number of con-
tacts required for rigidity �the isostatic point�. Recent work
by Wyart et al. �19� and Ellenbroek et al. �14� clarifies the
onset of elastic behavior as average coordination number is
increased above the isostatic limit. For materials with suffi-
ciently strong uniaxial anisotropy, classical elasticity theory
admits double-peaked profiles with both peak widths and the
separation between peaks growing linearly as a function of
depth �18�. The domain of applicability of classical elasticity
theory to granular materials is not well understood, however,

as it offers no simple way to incorporate noncohesive forces
between material elements or history-dependent frictional
forces. Several alternative theories for granular stress re-
sponse have been proposed that make predictions qualita-
tively different from conventional expectations. Models of
isostatic materials �22,23� and models employing “stress-
only” consititutive relations �24�, give rise to hyperbolic dif-
ferential equations for the stress and predict stress propaga-
tion along characteristic rays. Similarly, the directed force
chain network model predicts two diffusively broadening
peaks developing from a single peak at shallow depth �25�.
Numerical studies in small isostatic or nearly isostatic pack-
ings also find evidence of propagating peaks �7,10�. Simula-
tions of weakly disordered hexagonal ball-and-spring net-
works, a common example of an elastic material, can display
two-peaked stress response when the springs are one sided
�9,26� and uniaxial anisotropy is induced by contact break-
ing. Response in the ball-and-spring networks becomes
single peaked as friction increases, a result mirrored by a
statistical approach to hexagonal packings of rigid disks
�15,16�. Finally, a continuum elasticity theory with a nonana-
lytic stress-strain relation at zero strain has been shown to
account quantitatively for single-peaked stress response in
rainlike preparations of granular layers �27�.

We show here that an elasticity theory incorporating both
hexagonal anisotropy and near-field microstructure effects
can account for the experimental observations of Geng et al.
�1,2� The theory is phenomenological; it accounts for the
average stresses observed through a compilation of many
individual response patterns. Our goal is to determine
whether the ensemble average of effects of nonlinearities as-
sociated with force chains, contact breaking, and intergrain
contact forces can be captured in a classical model, and, in
particular, to account for the dramatic effects observed in
experiments on two-dimensional �2D� hexagonally close-
packed systems. To that end, we develop a nonlinear con-
tinuum elasticity theory applicable to systems with hexago-
nal anisotropy �28�. We find that these effects can account for
the quantitative discrepancy between the Boussinesq solution
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in 2D �the Flamant solution� for linear systems and the ex-
perimental data of Refs. �1� and �2� for disordered packings
of pentagonal grains and hexagonal packings of monodis-
perse disks. To compare computed stress fields to the experi-
mental data, we calculate the pressure in the material as a
function of horizontal position at fixed depth. We call such a
curve a “response profile.”

We find that induced dipole and quadrupole terms, which
we attribute to microstructure effects near the applied force,
can account for the narrowness of the response profiles in
isotropic materials without resorting to nonlinear effects. In
contrast, the response profiles observed in hexagonal pack-
ings cannot be fitted by the linear theory; inclusion of non-
linear terms capable of describing hexagonal anisotropy is
required. Using a theory based loosely on a simple triangular
lattice of point masses connected by springs, but allowing an
adjustable parameter specifying the degree of hexagonal an-
isotropy, we find reasonable fits to the response profile data.
We find that for sufficiently strong anisotropy the fitted re-
sponse profiles correspond to small strains. Thus the nonlin-
ear terms are necessary to capture the effects of material
order, rather than large displacements. This is consistent with
the experimental observations of Ref. �1�, for which the de-
formations were small and reversible.

The paper is organized as follows. In Sec. II, we review
well-known elements of the theory of nonlinear elasticity
and the multipole expansion of the stress field. In Sec. III, we
develop expressions for the free energies of isotropic and
several model hexagonal materials, including a model in
which strong nonlinearities arise for small strains. �We use
the term “free energy” to maintain generality, though in the
context of granular materials, finite-temperature effects are
negligible and our explicit models make no attempt to in-
clude entropic contributions.� In Sec. IV, we present a per-
turbative expansion of the response profiles for nonlinear
systems in powers of inverse distance from the point of ap-
plication of the boundary force. In Sec. V, we present the
response profiles obtained by adjusting the monopole, dipole,
and quadrupole strengths and the degree of hexagonal aniso-
tropy.

II. REVIEW OF ELASTICITY CONCEPTS,
DEFINITIONS, AND NOTATION

We first provide a brief review of stress response in linear
elasticity theory for an isotropic half plane. We then describe
the general equations of nonlinear elasticity that are solved in
Sec. IV for particular forms of the free energy. Finally, we
review the multipole formalism that is later used to model
the effects of microstructure in the region near the applied
force where the continuum theory must break down.

The response of an elastic half space to a point force
normal to the boundary, depicted in Fig. 1, was first given by
Boussinesq �17�. A normal force f is applied at the origin. In
linear elasticity the stress components �r� and ��� vanish on
the surface B. The force transmitted across a surface C en-
closing the boundary force and with outward normal n̂ must
be equal to the force applied at the boundary, namely
�CdC ẑ ·� · n̂= f . and �CdC x̂ ·� · n̂=0. We expect that the

Boussinesq result applies far from the point of forcing,
where the stress is weak and can be averaged over a large
representative volume of grains. In this regime, the stress
tensor � is solely radially compressive, independent of bulk
and shear moduli, and �in two dimensions� inversely propor-
tional to the distance from the point of application,

�rr =
2f cos �

�r
, �r� = 0, ��� = 0. �1�

Here r and � are polar coordinates, � being measured from
the vertical as depicted in Fig. 1. Compressive stress is posi-
tive. The stress contours are circles passing through the ori-
gin, where the boundary force is applied. This result is a
useful approximation to the response in a real material far
from other boundaries. For linear systems, it can be used to
calculate the response to an arbitrary distribution of force on
the boundary.

Nonlinearities arise from the proper geometric treatment
of finite strains and rotations as well as possible anharmonic-
ity in the free energy of the system. In classical elasticity, a
linear constitutive relation �e.g., Hooke’s law �29�� between
stress and strain results from a free energy A that is quadratic
in the components of the strain tensor. This can be regarded
as the first term in a Taylor expansion of A about an equilib-
rium reference configuration, and in this paper we include
cubic and quartic contributions to the free energy as well.
Unlike the quadratic terms, the higher-order contributions
can distinguish between a hexagonally anisotropic system
and an isotropic one.

When cubic and higher-order powers of the strain in A
become important, it may also be necessary to take into ac-
count geometric sources of nonlinearity. Let X= �X ,Z� be the
position of a material element in the reference �undeformed�
configuration and let x= �x ,z� be the position of the same
material element in the deformed configuration. The dis-
placement field is defined as u=x−X and the deformation
gradient is defined as

F = 1 + Grad u , �2�

where Grad= ��X ,�Z�. To ensure invariance under overall ro-
tations, one must work with the full Lagrangian strain

x

φ

rz

f

C

B

FIG. 1. Stress response in an elastic half space. Forces must
vanish everywhere on the free boundary B except at the origin. The
total force transmitted across the surface C is f ẑ.
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� =
1

2
�FTF − 1� �3�

rather than just the linearized strain �= �FT+F� /2. In con-
ventional �linear� elasticity theory, the terms in � nonlinear
in u are neglected and Grad can be replaced by grad
= ��x ,�z�.

The Cauchy stress � is the stress measured in experi-
ments and is a natural function of x. It must satisfy the equa-
tions of force balance, div �+�g=0, and torque balance,
�T=�, for any deformation. Here div �Div� is the divergence
with respect to the deformed �undeformed� coordinates. In
the context of nonlinear models with boundary conditions
expressed in terms of forces, these equations are more con-
veniently expressed with respect to the undeformed coordi-
nates, the nominal stress S=JF−1�, and the reference density
�0�X�=J��x�, where J=det F. The equations of force and
torque balance can be rewritten

Div S + �0g = 0, �4�

�FS�T = FS . �5�

Defining the thermodynamic tension T via S=TFT, the equa-
tions are closed by a constitutive relation coupling T to the
Lagrangian strain �and through it the deformation gradient�,
namely, T= �A

�� . Combining these, the nominal stress can be
written as

S =
�A

��
FT. �6�

Together, Eqs. �2�–�6� represent a set of equations specifying
the displacements in the system, for a specific material speci-
fied by the free energy A, and subject to the boundary con-
ditions that stresses vanish on the deformed surface �except
at the singular point�, and the total force transmitted through
the material is f ẑ.

Studies of the nonlinear Boussinesq problem have fo-
cused primarily on stability analysis �30–32�. Here we em-
phasize the form of the stress response profile and restrict our
attention to two-dimensional isotropic and hexagonally an-
isotropic systems. As will be described below, the stress re-
sponse can be developed in an expansion in inverse powers
of the distance from the boundary force, reminiscent of a
multipole expansion of an electromagnetic field.

The stress response of a hexagonal packing in Ref. �1�
�reproduced in Figs. 7–10� displays a rich structure, devel-
oping new peaks with increasing depth that gradually
broaden and fade. It is apparent that Eq. �1� can never rec-
reate such a response profile, as there is no length scale over
which the response develops. However, it is possible to cre-
ate two- �or more� peaked responses in isotropic linear elas-
ticity. All that is necessary is the application of more than
one force at the boundary. Two boundary forces oriented at
�� /6 to the normal, for example, will produce a two-peaked
stress response at shallow depths, as shown in Fig. 2�a�. For
depths much greater than the distance between the two

forces, the response approaches that of a single normal force
equal to the sum of the normal components of the two
boundary forces.

At distances larger than the separation between the points
of application of the force, the stress field in Fig. 2�a� can be
closely approximated by a multipole expansion. In a granular
material, the local arrangement of grains in regions where
strains are large will induce deviations from the continuum
theory, and in the Boussinesq geometry the far-field effects
of these deviations can be approximated by placing a series
of multipolar forcing terms at the origin. Thus, although the
physical force applied by Geng et al., for example, was a
single, sharply localized, normal force, we include in our
continuum theory parameters specifying dipole, quadrupole,
and perhaps higher-order multipole forcing strengths to ac-
count for the effect of microstructure. If the applied force is
spread over enough grains that the continuum solution pre-
dicts only small strains everywhere, then the multipole con-
tributions can be explicitly computed within the continuum
theory. If, on the other hand, the force is applied to a single
grain and represented as a � function in the continuum
theory, the theory will predict large strains near the origin
and microstructure effects must be taken into account either
phenomenologically, as we do here, or through a more de-
tailed model of the microstructure in the vicinity of the ap-
plied force. We conjecture that the size of this region near the
origin scales with the “isostaticity length scale” discussed in
Refs. �19� and �14�. A similar crossover to elastic behavior
was conjectured in Ref. �23�.

The first several multipole forces and corresponding pres-
sure profiles, are depicted in Figs. 2�b�–2�g�. A multipole

FIG. 2. �a� Contour plot of pressure for two point forces of equal
magnitude located at �� /2 and oriented at �� /6 from the surface
normal. Distances are in units of �. The response is two peaked for
shallow depths, transitioning to the circular contours of �rr for a
single normal force at the origin. Monopole �b�,�e�, dipole �c�,�f�,
and quadrupole �d�,�g� boundary forcings, along with contours of
the corresponding pressures.
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force with stresses that decay as 1 /rn can be constructed
from n evenly spaced compressive or shearing boundary
forces having alternating directions and magnitudes in pro-
portion to the nth row of Pascal’s triangle. The integral
�−	

	 dx xn−1f�x� is the lowest-order nonvanishing moment of
the boundary force distribution f�x�.

The form of the far-field stress response to multipole forc-
ing in linear elasticity can be developed by considering the
Airy stress function 
 such that �rr=�r
 /r+���
 /r2, �r�

=��r=−�r���
 /r�, and ���=�rr
. The Airy stress function is
biharmonic:

��
 = 0. �7�

Assuming 
 has the form


�r,�� = r2�
n=1

	
1

rn
�n���� �8�

and solving for 
�n� yields a series of corresponding tensors
��n�. �It is convenient to restrict ourselves to transversely
symmetric multipole terms, such as those in Figs. 2�b�–2�d�,
so that there is only one corresponding stress tensor for each
value of n.� ��1� corresponds to the monopole of Eq. �1�. For
each ��n�, ���

�n� and �r�
�n� must vanish on the surface except at

the origin. For the surface C in Fig. 1 we generalize the
monopole normalization to arbitrary n:

�
−�/2

−�/2

r d��r sin ��n−1�p̂ · ��n� · r̂� = 0,

�
−�/2

−�/2

r d��r sin ��n−1�q̂ · ��n� · r̂� = kan, �9�

where p̂= x̂ �ẑ� and q̂= ẑ �x̂� for odd �even� powers of n. k
and a carry the units of stress and length, respectively; the
applied force is f =ka. Subject to this normalization, the di-
pole stress tensor ��2� is

�rr
�2� =

8ka2

�r2 cos 2� ,

�r�
�2� =

4ka2

�r2 sin 2� ,

���
�2� = 0, �10�

and the quadrupole stress tensor ��3� is

�rr
�3� = −

5ka3

�r3 cos 3� −
3ka3

�r3 cos � ,

�r�
�3� = −

3ka3

�r3 sin 3� −
3ka3

�r3 sin � ,

���
�3� =

ka3

�r3cos 3� +
3ka3

�r3 cos � . �11�

Contours of the associated pressures p�n�= �1 /2�Tr ��n� and
sample boundary forces which produce them are shown in
Figs. 2�b�–2�d�.

The higher-order multipole terms decay more quickly
than the monopole term, so, at asymptotically large depth in
a material in which both monopole and higher-order terms
are present, the response is indistinguishable from the Bouss-
inesq solution. Closer to the point of application, the induced
multipole terms contribute a more complex structure to the
response. The distance over which this structure is observ-
able depends on the material properties through the elastic
coefficients and increases with the strength of the applied
force f .

III. MODEL FREE ENERGIES

Here we develop expressions for the elastic free energy of
several model systems having hexagonal symmetry. These
will be needed to construct constitutive relations relating
stress and strain.

A. Symmetry considerations

To linear order the elastic energy is quadratic in the strain
components:

A =
1

2
�ijkl
ij
kl. �12�

� is a fourth-order tensor of rank 2, and its components are
the elastic coefficients of the material. For an isotropic ma-
terial the free energy must be invariant for rotations of 

through arbitrary angle. Therefore A can depend only on sca-
lar functions of the strain tensor components. In two dimen-
sions, the strain tensor has two eigenvalues or principal in-
variants. All other scalar invariants, including the
independent invariants I1=Tr �=
ii and I2=Tr �2= �
ij�2

�summation implied�, can be expressed in terms of the prin-
cipal invariants �33� or, equivalently, in terms of I1 and I2.
The free energy of an isotropic linear elastic material can be
expressed in terms of combinations of I1 and I2 that are qua-
dratic in the strain components,

A =
1

2
�I1

2 + �I2, �13�

where � and � are the Lamé coefficients. The reasoning
generalizes to higher orders. At each order, there will be as
many elastic coefficients as there are independent combina-
tions of I1 and I2. To quartic order in the strains, we have

A = �1

2
�I1

2 + �I2	 + ��1I1
3 + �2I1I2� + ��1I1

4 + �2I2
2 + �3I1

2I2� .

�14�

We refer to the �’s and the �’s as third- and fourth-order
elastic coefficients, respectively.
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To construct the free energy of a hexagonal material, it is
useful to consider a change of coordinates

� = x + iz ,

� = x − iz , �15�

as suggested in Ref. �29�. For a rotation of � /3 about
�ẑ� x̂�, these coordinates transform as �→�e�i/3 and
�→�e−�i/3. The free energy of an elastic material must be
invariant under such a rotation, which implies that a com-
ponent of the tensor � can be nonzero if and only if it
too is invariant. For example, the quadratic coefficient
����� is nonzero because, under rotation by � /3,
�����→e�i/3e�i/3e−�i/3e−�i/3�����=�����. The only other inde-
pendent nonzero quadratic coefficient is �����. Cubic and
higher-order coefficients, which are labeled by six or more
indices, can also be invariant by having six like indices,
as in �������. There are three independent coefficients at cubic
order and four at quartic order.

The general form of the free energy of a hexagonal mate-
rial is, to quartic order,

A =
1

2!
�2�1
��
�� + 4�2
��

2 � +
1

3!
��1�
��

3 + 
��
3 �

+ 12�2
��
��
�� + 8�3
��
3 � +

1

4!
�6L1
��

2 
��
2

+ 48L2
��
��
��
2 + 16L3
��

4 + 8L4�
��
3 
�� + 
��

3 
���� ,

�16�

where 
��=
xx−
zz+2i
xz, 
��=
xx−
zz−2i
xz, and 
��

=
xx+
zz.
For simplicity, we have assumed that terms involving gra-

dients of the strains are negligible �34,35�.

B. Hexagonal ball-and-spring network

We now construct the free energy for several specific hex-
agonal materials, taking the point-mass-and-spring network
of Fig. 3�a� as a starting point. The elastic coefficients are
determined by calculating the free energy under a homoge-

neous strain and comparing to Eq. �16�. The springs are
taken to have an equilibrium length � and to obey Hooke’s
law: for a spring with one end at x1 and the other at x2 the
force is

f = − k�
�x2 − x1� · �x2 − x1� − �� , �17�

where k is the spring constant. We take the springs to be at
their equilibrium lengths in the undeformed system: �=a, the
lattice constant.

Consider the homogeneous strain


 = �
xx 0

0 
zz
	 �18�

which stretches the coordinates to x=
1+2
xxX and z
=
1+2
zzZ. The free energy per unit �undeformed� volume
of a hexagonal ball-and-spring network with one-third of the
springs oriented along the x̂ direction under this stretch is

4

3k

A = �3

2

xx

2 +
3

2

zz

2 + 
xx
zz	 − �+
9

8

xx

3 +
11

8

zz

3

+
9

8

xx

2 
zz +
3

8

xx
zz

2 	 + �135

128

xx

4 +
215

128

zz

4

+
45

64

xx

2 
zz
2 +

45

32

xx

3 
zz +
5

32

xx
zz

3 	 . �19�

The presence of cubic and higher-order terms in the free
energy is due to the nonzero spring equilibrium length. The
free energy for a constrained axial compression or extension
in the x̂ and ẑ directions is plotted in Fig. 3. The corrections
to the quadratic expression stiffen the system under compres-
sion and soften it slightly under small extensions.

Comparing Eqs. �16� and �19� and equating like coeffi-
cients of 
xx and 
zz, we find

�1 = �2 =

3

8
k ,

�1 = − �2 = − �3 =
3
3

32
k ,

L1 = L2 = L3 = − L4 =
15
3

128
k . �20�

A similar calculation for a material in which one-third of the
springs are oriented vertically, corresponding to a reference
configuration rotated by 90° from the one shown in Fig. 3,
yields

�1 = �2 =

3

8
k ,

− �1 = − �2 = − �3 =
3
3

32
k ,

L1 = L2 = L3 = L4 =
15
3

128
k . �21�

FIG. 3. �a� Ball-and-spring network with hexagonal symmetry
and springs oriented horizontally. Even for a linear force law, the
free energy has terms of cubic and higher order in the strains when
the equilibrium length of the springs is nonzero. �b� Free energy as
a function of strain for a unit cell of the ball-and-spring network in
�a�. �Solid black� Vertical uniaxial compression 
=
zz with 
yy

=0. �Dashed black� 
=
xx with horizontal uniaxial compression,

zz=0. �Dashed gray� Linear elastic approximation for both cases.

�0 corresponds to compression.
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1. The � material

Goldenberg and Goldhirsch �8,9,26� find a two-peaked
stress response in numerical simulations of a hexagonal lat-
tice of springs when the springs are allowed to break under
tensile loading. Contact breaking explicitly breaks our as-
sumption of local hexagonal anisotropy in any particular
sample. In the context of an ensemble average, however, the
material description retains hexagonal symmetry and the ef-
fects of contact breaking are captured phenomenologically
by considering material made of springs with a force law that
softens under extension:

f = − k�
�x2 − x1� · �x2 − x1� − a�

+ k
�

a
�
�x2 − x1� · �x2 − x1� − a�2. �22�

For ��0 the springs soften under tension and stiffen under
compression, as shown in Fig. 4. In the horizontal orientation
the elastic constants from Eq. �20� are shifted according to

�1 = �2 =

3

8
k ,

�1 = − �2 = − �3 =
3
3

32
k −

�

a

3
3

32
k ,

L1 = L2 = L3 = − L4 =
15
3

128
k −

�

a

9
3

64
k . �23�

2. The � material

In the spirit of phenomenological modeling, all of the
elastic constants consistent with hexagonal symmetry should
be considered to be parameters to be determined by experi-
ment. To probe the importance of hexagonal anisotropy, we
consider a model in which all elastic constants but one are
fixed and define a parameter � corresponding to the strength
of the anisotropy. Note that the elastic constants for the two
orientations of the hexagonal ball-and-spring network con-
sidered above can be rewritten as

�1 = �2 =

3

8
k ,

�2 = �3 = −
3
3

32
k, �1 = �

3
3

32
k ,

L1 = L2 = L3 =
15
3

128
k, L4 = − �

15
3

128
k . �24�

The case �=1 gives the network with horizontal springs; �
=−1 gives the network with vertical springs; and �=0 gives
an isotropic system. The linear response for elastic materials
with other ansisotropies is treated in Ref. �18�.

IV. METHOD

We wish to obtain corrections to the linear elastic result
for a material with hexagonal symmetry. For later conve-
nience we write f =Qmka, where Qm is dimensionless, k has
units of a spring constant, and a is a lattice constant with
units of length. We expand the stress in successive inverse
powers of the radial coordinate, and refer to the terms in the
expansion as the dipole correction, quadrupole correction,
and so forth. For simplicity and clarity, we present here in
detail the calculation corresponding to the free energy of Eq.
�16� with coefficients given in Eq. �20�. The general equa-
tions for arbitrary elastic coefficients are exceedingly long
and unilluminating.

We solve for the the displacements uR�R ,�� and
u��R ,��, from which the stress tensor can be reconstructed.
Capitalized coordinates are used as we are now careful to
distinguish between the deformed and undeformed states.

After the deformation, the point X is at x=X+uR�R ,��R̂
+u��R ,���̂. To linear order and for the ball-and-spring net-
work described in Eq. �20�, the displacements are

uR
�0��R,�� =


3Qma

�
�cos � ln�R/R0� +

1

3
� sin �	 ,

u�
�0��R,�� =


3Qma

�
�− sin � ln�R/R0�

−
2

3
sin � +

1

3
� cos �	 . �25�

The parameter R0 requires comment. Because the material is
semi-infinite in extent, it is free to undergo an arbitrary rigid-

body translation in the Ẑ direction under the influence of a
normal boundary force. Thus the point along the Z axis at
which the deformation u is zero may be chosen arbitrarily.
R0 parametrizes this variation. Note that the nominal stress,
which in the linear theory is equivalent to � in Eq. �1�, is
independent of R0.

To find the dipole correction, we take uR=uR
�0�+uR

�1� and
u�=u�

�0�+u�
�1� and assume a correction of the form

FIG. 4. The force law of Eq. �22� for k=1 and �=0, . . . ,8.

BRIAN P. TIGHE AND JOSHUA E. S. SOCOLAR PHYSICAL REVIEW E 77, 031303 �2008�

031303-6



uR
�1��R,�� = a2v0���

R
+ a2v1���

R
ln�R/R0� ,

u�
�1��R,�� = a2w0���

R
+ a2w1���

R
ln�R/R0� . �26�

The deformation gradient F in polar coordinates is

F = �1 + �RuR ���uR − u��/R
�Ru� 1 + ���u� + uR�/R 	 . �27�

Through Eqs. �3� and �6� the nominal stress can be written
entirely in terms of the displacements, and through them in
terms of the four unknown functions, v0, v1, w0, and w1.

Substituting the linear Boussinesq solution of Eq. �25� in
Eq. �27�, evaluating Eq. �4�, and requiring the coefficient of
1 /R3 to vanish yields conditions on the v’s and w’s. �Terms
of smaller order in 1 /R vanish identically.� We find

11 − 13 cos 2� − 3 cos 4� − 9 cos 6� − 6 cos 8�

=
9

2
v0� − 27v1 − 27w0� + 9w1� + �9

2
v1� − 27w1�	ln�R/R0� ,

− 5 sin 2� + sin 4� + 3 sin 6� + 2 sin 8�

= 3v0� + 3v1� +
9

2
w0� − 3w1 + �3v1� +

9

2
w1�	ln�R/R0� . �28�

For the moment, we neglect terms of higher order in 1 /R.
The source terms on the left-hand side in Eq. �28� are gen-
erated by the linear solution. Requiring coefficients of ln R to
vanish independently gives four second-order ordinary dif-
ferential equations for the four unknown functions.

The conditions that normal and shear forces vanish every-
where on the deformed boundary except at the point of ap-
plication of the external force can be written

S�R�R � 0,� = � �/2� = 0,

S���R � 0,� = � �/2� = 0. �29�

Both the S�R and S�� components of stress have terms pro-
portional to ln R. When we require these terms to vanish
independently of all other terms, Eq. �29� represents eight
constraints. The nominal stress must also satisfy force-
transmission conditions

�
C

x̂ · ST · n̂ dC = 0,

�
C

ẑ · ST · n̂ dC = f , �30�

where C is any surface enclosing the origin �see, e.g., Fig. 1�
and n̂ is the unit normal to C. Equation �30� is satisfied by
the linear elastic solution, and all solutions to Eq. �28� sub-
ject to Eq. �29� contribute zero under the integration, so this
provides no additional constraint on the system.

The eight constraints of Eq. �29� fix only seven of the
eight integration constants. The eighth integration constant,

which we label Qd, multiplies terms identical to those con-
tributed in linear elasticity by a horizontally oriented dipole
forcing such as that depicted in Fig. 2�c� and given in Eq.
�10�. Qd is fixed by demanding that a variation of the param-
eter R0 produce only a rigid body translation of the material.
The integration constants determined in this way produce a
nominal stress S independent of R0, as must be the case.

The solution of Eq. �28� consistent with Eq. �29� is

v0��� = �Qm
2

�2 	�5

6
+

7

3
cos 2� +

1

4
cos 4� +

1

4
cos 6�

+
1

12
cos 8� +

11

6
� sin 2�	 − �4�Qd


3
	cos 2� ,

v1��� = �3Qm
2

2�2 	cos 2� ln�R/R0� ,

w0��� = − �Qm
2

�2 	�11

9
� +

2

3
sin 2� +

1

12
sin 4� +

1

12
sin 6�

+
1

36
sin 8� −

11

18
� cos 2�	 + �4�Qd

3
3
	sin 2� ,

w1��� = − � Qm
2

2�2	sin 2� ln�R/R0� . �31�

For the choice R0=a, we find the induced dipole coefficient
Qd=0, and for the following we fix R0 to have this value.
The same choice of R0 also yields the induced quadrupole
coefficient Qq=0 below. As discussed above, rather than set
them to zero, we leave these terms in the displacements,
and correspondingly the stresses, as free parameters to
account for the influence of microstructure on the response
�see Fig. 5�. They are weighted so that Qd=1 and Qq=1
correspond to the stresses of Eqs. �10� and �11�.

We repeat the process described above to develop quad-
rupole corrections to the stress response. The displacements
are assumed to have the form uR�R ,��=uR

�0��R ,��+uR
�1�

��R ,��+uR
�2��R ,�� and u��R ,��=u�

�0��R ,��+u�
�1��R ,��

+u�
�2��R ,�� where the second-order corrections have the

form

(a) (b)

FIG. 5. �Color online� Two imagined scenarios in which a point
force induces a dipole. Regions of overlap indicate a compressive
contact. �a� The disks in the second layer slide outward, e.g., for
low friction. �b� Alternatively the disks might roll inward, toward
the line of force, e.g., due to greater friction between grains. This
would select a dipole term in the stress response with opposite sign
from the case depicted in �a�. Thus, the details of the near-field
response depend on the mechanics of the discrete system.
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uR
�2��R,�� =

V0���
R2 +

V1���
R2 ln�R/R0� +

V2���
R2 ln�R/R0�2, u�

�2��R,�� =
W0���

R2 +
W1���

R2 ln�R/R0� +
W2���

R2 ln�R/R0�2. �32�

The details of the calculation are omitted, as it is conceptually similar to the dipole calculation but involves much longer
expressions. Defining cn�cos n�, sn�sin n�, and L� ln�R /R0�, the pressure is

p„r�R,��,��R,��… =
Qmka

�

c1

R
−

4Qdka2

�

c2

R2 −
2Qqka3

�

c3

R3 +
B2

R2 �17 − c2 − 6c4 − 9c6 − 4c8 − 22�s2 − 18Lc2�

+
B3

R3�−
99

2
c1 + �616277

8820
−

27

7
�2 +

41

3
�2	c3 +

205

2
c5 +

139

3
c7 + 25c9 +

63

4
c11

+
119

10
c13 +

10

3
c15 − ��66s1 + 161s3 − 66s5 − 88s7 −

110

3
s9	

+ L�− 48c1 −
329

3
c3 + 36c7 + 30c9 − 42�s3	 − 27L2c3


+
B3�

R3 Qd�8c1 −
151

14
c3 − 6c7 − 5c9 + 7�s3 + 9Lc3	 , �33�

where B2=Qm
2 ka2 /12
3 /�2, B3=Qm

3 ka3 /36�3, and B3�

=4Qm
3 ka3 /3
3�2.

We will find below that the � material best describes the
data of Ref. �1�. In this case the pressure of Eq. �33� gains a
number of additional terms involving �. These terms are
given in the Appendix.

V. RESULTS

Given the expressions derived above for the pressure, we
perform numerical fits to the data from Geng et al. �1�. There
are four fitting parameters for the ball-and-spring material:
the monopole coefficient Qm, the dipole coefficient Qd, the
quadrupole coefficient Qq, and the spring constant k. We take
the lattice constant to be the disk diameter: a=0.8 cm. The
three multipole coefficients have been defined to be dimen-
sionless. We set R0=a so that Qd and Qq would be zero in a
theory with no microstruture correction. In two dimensions
the units of stress are the same as the units of the spring
constant k. Thus k sets the overall scale for the stress. For
theoretical purposes, k could be scaled to unity; in our fits it
serves merely to match the units of stress in the experimental
data.

We attempt to fit experimental measurements on
pentagonal-grain packings by varying Qm, Qd, and Qq in the
isotropic theory. To explain the experimental data on hexago-
nal disk packings, we attempt fits based on the ball-and-
spring network, the � material, and the � material.

We regard the response profiles presented in the following
section, particularly Figs. 6 and 9, as a proof of principle: the
average response in experiments of the sort performed in
Ref. �1� is consistent with an elastic continuum approach
when microstructure and material order are properly incor-
porated. The results we present are phenomonological in that
we have obtained elastic coefficients and multipole strengths
by fitting to data. We expect that the elastic coefficients we

fit are material properties in the sense that they could be
determined by experiment or simulation in another geometry
�e.g., a uniform shear or compression�, and then used in our
calculations for point response.

A. Fitting to pressure

The photoelastic measurements of Geng et al. associate a
scalar quantity with each point in space. The measurement
technique extracts no directional information, so the relevant
theoretical prediction to compare to experiment is the local
pressure p= �1 /2�Tr � �36�.

The data of Ref. �1�. are averaged over many experimen-
tal realizations; the average hydrostatic head is also sub-
tracted. The hydrostatic contribution to the stress is largest at
depth where, as seen below, the linear �monopole� response
dominates. Therefore, although the elasticity theory is non-
linear and superposition does not strictly hold, we expect the
incurred error from differencing to be small. We note also
that our fits necessarily produce regions of small tensile
stress near the surface. Removal of all tensile stresses from
the solution would require treating the nonlinearity associ-
ated with contact breaking to all orders in the nonlinear elas-
ticity theory. In the present context, such regions should be
taken only as indicating that contacts are likely to break.

Fitting to the Cauchy pressure p, which is a natural func-
tion of the deformed coordinates x, presents a difficulty,
namely, our calculations yield a relation x=X+u�X� that is
not invertible. Although in principle � is known for all
points in the deformed material, we can still only reference
those points by their undeformed positions. That is, we have
calculated p(x�X�). Thus, for the purposes of fitting, we ne-
glect the difference betwen x and X. In the experiment, the
forcing was restricted to strengths for which the strains were
small; there were no large-scale rearrangements. This sug-
gests that replacing the deformed coordinates with the unde-
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formed coordinates will introduce only small errors. Of
course, if the strains are small, it is reasonable to ask whether
nonlinear elasticity is really needed or helpful. A discussion
of this point is provided in Sec. VI below.

To facilitate comparison between various materials, we
restrict our consideration to boundary forces f =Qmka with
Qm=1. We have found that similar response profiles can be
obtained for 0.25�Qm�2, and all best-fit values for Qm lie
in this range. The force f =ka is that required to compress
one Hookean spring through one lattice constant.

Rather than compare pressure directly to the data of Ref.
�1�, we scale each data point by its depth Z and fit to
ZP�X ,Z� for two depths: Z=2.7 and 3.60 cm �recall that the
grain diameter is 0.80 cm�. Scaling by Z compensates for the
decay of the response with depth. For a reasonable fit, fitting
to data at one or two shallow depths gives good agreement
with all data at greater depth. Generally, the fitting algorithm
returns parameters such that agreement with experimental
profiles at depths shallower than the shallowest fitting depth
is poor. For the best model material, however, it is possible
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FIG. 6. �Color online� �Black curves� Fit of Cauchy pressure for a springlike isotropic ��=0� material with free energy expanded to
quartic order in the strains. The fit parameters are Qm=1, Qd=0.5, Qq=−4.6, and k=702 and were determined by fitting to response in a
packing of pentagonal particles �gray points� of width 0.8 cm at depths Z=2.7 and 3.60 cm. �Long-dashed curves� Linear elastic multipole
response with Qm=1, Qd=0.6, Qq=−4.0, and k=700, fitted to the same data. It is nearly indistinguishable from the curve incorporating
nonlinear corrections to quartic order. �Short-dashed curves� Linear elastic monopole response with Qm=1, Qd=0, Qq=0, and k=1032.
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to achieve reasonable agreement with data at a depth of
2.25 cm.

B. Pentagonal particles

The nominal pressure of the springlike isotropic ��=0�
material for Qm=1, Qd=0.5, Qq=−4.6, and k=702 is shown
in Fig. 6. Parameters were determined by fitting to mean
pentagonal particle response data. The result is a clear im-
provement over the fit to linear elastic pressure; the nonlinear
calculation is able to capture the narrowing of the response
as Z→0. At Z=2.25 cm, shallower than the fitting data, the
curve has an appropriate width but overshoots the peak. Note
that there is little reason a priori to assume that the elastic
coefficients we have chosen are the appropriate ones to de-
scribe this material.

A multipole expansion

p =
Qmka

�R
cos � +

4Qdka2

�R2 cos 2� −
2Qqka3

�R3 cos 3�

�34�

with Qm=1, Qd=0.6, Qq=−4.0, and k=700 is nearly indis-
tinguishable from the full nonlinear expression with micro-
structure correction. This suggests that in the disordered
packings the deviation from monopolelike linear elastic re-
sponse is a consequence of microstructure, not effects cap-
tured by the nonlinear theory.

C. Hexagonal packings

1. Ball-and-spring fit

The nominal pressure of the ball-and-spring network for
Qm=1, Qd=9.1, Qq=36, and k=112 is shown in Fig. 7. Pa-
rameters were determined by fitting to mean hexagonal pack-
ing response data. The pressure has two peaks at shallow
depths; by Z=5 cm it has crossed over to a single central
peak. As expected, the elastic prediction improves with
depth, as the monopole term, which is independent of all
elastic coefficients, comes to dominate. For depths z
�3 cm there are clear qualitative differences between the fit
and the data. The two large peaks in the data are wider apart
than the prediction and they fall off more sharply with hori-
zontal distance from the center; moreover, the theoretical
prediction fails to capture the small central peak in the data.

2. �-material fit

The nominal pressure of the � material for Qm=1, Qd
=0.9, Qq=−15.4, k=354, and �=8.9 is shown in Fig. 8. The
pressure response in the � material is a better fit than that for
the ball-and-spring network, as it more closely recreates the
two-peaked structure from Z�4−6 cm. It also drops off
more sharply in the wings than the ball-and-spring response.
The central peak, however, is still absent. Moreover, the
value of ��9 is fairly large �see Fig. 4�.

3. �-material fit

The nominal pressure of the � material for Qm=1, Qd
=0.6, Qq=−2.0, k=353, and �=12.4 is shown in Fig. 9.

Parameters were determined by fitting to mean hexagonal
response data. The �-material response does a better job of
capturing the peaks than both the ball-and-spring material
and �-material response profiles. As for the � material, the
shape of the response peaks of the � material is narrower and
more appropriately positioned than that of the ball-and-
spring material. The �-material profiles do a better job of
capturing the small central peak, though the required � value
of 12.4 represents a hexagonal anisotropy that is very strong
compared to that of a simple ball-and-spring network.

Figure 10 shows the �-material response without micro-
structure correction �Qm=1�, �=10.8, k=509� and the linear
elastic response with induced multipole terms of Eq. �34�
�Qm=1, Qd=11.4, Qq=42, k=116�. Neither agrees well with
the data. It is necessary to include nonlinear as well as mi-
crostructure corrections to the linear elastic result to obtain
good agreement with the mean hexagonal response data.
This contrasts with the mean disordered response data, which
can be described with a microstructure correction alone. We
infer that nonlinear corrections are needed in the hexagonal
system to capture the material anisotropy.

D. Crossover to linear elasticity

For shallow depths the hexagonal anisotropy of the or-
dered disk packing is strongly reflected in the functional
form of its stress response. The dipole and quadrupole cor-
rections which shape the response in the near field fall off as
1 /R2 and 1 /R3, respectively, while the monopole response
decays as 1 /R. Sufficiently deep within the material, the
monopole term, which is identical to the linear elastic solu-
tion, will dominate. Figure 11 shows contours of the nominal
pressure for the � material of Fig. 9 in the near and far fields.
In the first 6 cm of depth the three peaks seen in the data are
clearly visible. The contours of the pressure in linear elastic-
ity are circles, and by a depth of 40 cm this form is largely
recovered.

E. Physical pressure and strain

Having determined fit parameters, it is possible to visual-
ize the physical or Cauchy pressure p= �1 /2�Tr �(x�X�) and
strains in the material. In the undeformed material, each disk
sits on a lattice site which we label by an index i. Under the
deformation the disk at Xi moves to xi=Xi+ui. We draw a
disk of radius D=0.8 cm at xi and shade it in proportion to
�Xi�pi(xi�Xi�). The first three layers of the packing, for which
the displacements and pressure are clearly diverging near the
applied force, are drawn but not shaded. Though we do not
make any attempt to portray the deformations of the disks
themselves, the overlap or separation between disks gives a
good sense of the strain in the material, and the color map
indicates the local variation of pressure on the grain scale.
The �-material fit for Qm=1 is shown in Fig. 12. The two-
peaked response structure is immediately apparent; the
smaller third peak is more difficult to see, but is present
for the first few rows. There is dilatation near the surface.
The disks directly below the applied force participate in
the formation of arches, which is consistent with the
appearance of two large peaks along the lines �= �� /6.
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VI. STRAIN MAGNITUDE

We have demonstrated that hexagonally anisotropic non-
linear elastic response can display stress profiles similar to
those seen in ordered granular packings, which suggests that
significant deviations from the classical Boussinesq response

can extend to depths of tens of layers. However, from Fig.

12�a�, it is also clear that the attendant strains are large, cre-
ating regions of strains in the first two dozen layers that are
much larger than those observed in the systems studied by
Geng et al. This is not entirely surprising for the choice
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FIG. 7. �Black curves� Fit of Cauchy pressure for a ball-and-spring network including cubic and quartic corrections to the free energy.
The fit parameters are Qm=1, Qd=9.1, Qq=32, and k=112 and were determined by fitting to the response in a monodisperse hexagonal
packing of disks �gray points� of diameter 0.8 cm at depths Z=2.7 and 3.60 cm.
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Qm=1. We note, however, that by fixing Qm=1 /4, as in Fig.
12�b�, we obtain a fit in which strains outside the first three
layers are reasonably small. Differences from the response
profiles in Fig. 9 are imperceptibly small; plotted on top of
Fig. 9, the Qm=1 /4 and 1 curves would overlap. The micro-

structure corrections are still of order unity, the spring con-
stant is four times larger �so that the imposed force f is
unchanged�, and the hexagonal anisotropy is increased sig-
nificantly: �=45.7. Thus in a our simplistic ball-and-spring-
inspired material, the observed profiles can be attributed ei-

�8 �6 �4 �2 0 2 4 6 8

0

100

200

300

400

x �cm�

z
p
�a

rb
.u

ni
ts
�

depth � 2.25 cm

�8 �6 �4 �2 0 2 4 6 8

0

100

200

300

400

x �cm�

depth � 2.70 cm

z
p
�a

rb
.u

ni
ts
�

�8 �6 �4 �2 0 2 4 6 8

0

100

200

300

400

x �cm�

z
p
�a

rb
.u

ni
ts
�

depth � 3.60 cm

�8 �6 �4 �2 0 2 4 6 8

0

100

200

300

400

x �cm�

depth � 4.05 cm

z
p
�a

rb
.u

ni
ts
�

�8 �6 �4 �2 0 2 4 6 8

0

100

200

300

400

x �cm�

z
p
�a

rb
.u

ni
ts
�

depth � 4.50 cm

�8 �6 �4 �2 0 2 4 6 8

0

100

200

300

400

x �cm�

depth � 5.40 cm

z
p
�a

rb
.u

ni
ts
�

�8 �6 �4 �2 0 2 4 6 8

0

100

200

300

400

x �cm�

z
p
�a

rb
.u

ni
ts
�

depth � 6.75 cm

�8 �6 �4 �2 0 2 4 6 8

0

100

200

300

400

x �cm�

depth � 8.90 cm
z

p
�a

rb
.u

ni
ts
�

FIG. 8. �Black curves� Fit of Cauchy pressure for the � material including cubic and quartic corrections to the free energy. The fit
parameters are Qm=1, Qd=0.9, Qq=−15, k=354, and �=8.9 and were determined by fitting to the response in a monodisperse hexagonal
packing of disks �gray points� of diameter 0.8 cm at depths Z=2.7 and 3.60 cm.
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ther to strong nonlinearity due to large strain magnitude or to
strong hexagonal anisotropy.

The material constants of Eq. �24� were chosen as a mini-
mal hexagonally anisotropic model, rather than derived from
a microscopic model. We speculate that the enhancement of
the nonlinearity and/or the hexagonal anisotropy over the

values obtained naturally from simple ball-and-spring mod-
els may be due to the importance of a short length scale
��D in the grain-grain interactions. Such a length scale
may be the consequence of, e.g., nonlinear grain interactions
�“soft shell” grains �37� or Hertzian force laws�, or inhomo-
geneous elastic coefficients due to microscopic grain irregu-
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FIG. 9. �Black curves� Fit of Cauchy pressure for the � material including cubic and quartic corrections to the free energy. The fit
parameters are Qm=1, Qd=0.6, Qq=−2.0, k=353, and �=12.4 and were determined by fitting to the response in a monodisperse hexagonal
packing of disks �gray points� of diameter 0.8 cm at depths Z=2.7 and 3.60 cm.
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larities �26,38�, in which case small strains may correspond
to large deformations of contacts on the relevant scale �. Full
consideration of such effects is beyond the scope of the
present work.

Considering all the results presented above, we arrive at
the following picture. The important distinctions between 2D
disordered and hexagonal granular packings are the effects
near the applied point force and the material symmetry. Al-
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FIG. 10. �Color online� �Black curves� Fit of Cauchy pressure for the � material including cubic and quartic corrections to the free energy
but without multipole corrections for microstructure �Qd=0=Qq�. The fit parameters are Qm=1, k=509, and �=10.8 and were determined
by fitting to the response in a monodisperse hexagonal packing of disks �gray points� of diameter 0.8 cm at depths Z=2.7 and 3.60 cm.
�Dashed curves� Linear elastic multipole response with Qm=1, Qd=11.4, Qq=43, and k=116, fitted to the same data.
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though nonlinearity complicates calculations considerably, it
enters only as a matter of necessity in incorporating material
order: elasticity cannot distinguish between isotropic and
hexagonally anisotropic materials otherwise. The facts that
�1� nonlinearities in the isotropic material provide no notable
improvement over microstructure corrections alone �see Fig.
6�, and �2� hexagonal materials admit reasonable response
profiles for small strain and strong anisotropy �see Fig.
12�b�� underscore this point. A large � value may be difficult
to interpret in terms of a microscopic model, but this is not
surprising given that it represents a combination of strong
local nonlinearites and an ensemble average over microstruc-
tures that are known to lead to vastly different stress or force
chain patterns.

VII. CONCLUSION

Our results indicate that continuum elasticity theory can
provide semiquantitative explanations of nontrivial experi-
mental results on granular materials. For isotropic �disor-
dered� materials subject to a point force, it appears that non-
linearities are less important than multipoles induced at the
surface where continuum theory breaks down. For hexagonal
disk packings, however, the anisotropy associated with non-
linear terms in the elasticity theory is required. We have stud-
ied the nonlinear theory of response in a hexagonal lattice of
point masses connected by springs and a phenomenological
free energy with an adjustable parameter determining the
strength of the hexagonal anisotropy. A similar treatment
would be possible for systems with, e.g., square or uniaxial
symmetry, but the free energy would acquire additional
terms at all orders. For a particular choice of elastic coeffi-
cients, the multiple peaks in the pressure profile at interme-

diate depths and the recovery of the familiar single peak of
conventional �linear� elasticity theory at large depths are well
described by the theory. To the extent that theoretical ap-
proaches based on properties of isostatic systems predict hy-
perbolic response profiles �23�, our analysis indicates that the
materials studied in Refs. �1� and �2� have average coordina-
tion numbers that place them in the elastic rather than the
isostatic regime.
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APPENDIX: PRESSURE IN THE � MATERIAL

The expression of Eq. �33� gives the pressure in a hori-
zontally oriented ball-and-spring network with elastic coef-
ficients given by Eq. �16�. The pressure in the � material
of Eq. �24� is given by adding an additional term
p�(r�R ,�� ,��R ,��) to the expression in Eq. �33�, where p�

is given by
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FIG. 11. �Color online� Isobars for the � material with fit pa-
rameters identical to those in Fig. 9. At shallow depths the structure
is three peaked, the outer two peaks seeming to propagate with
depth along lattice directions �arrows�. At greater depth the cross-
over to monopole response is evident. There are small regions of
tensile stress near the surface, above the p=0 contour �bold�.

FIG. 12. �a� The deformed � material. The first three layers of
the material are omitted. Disk i with lattice position Xi in the un-
deformed material is shown here centered at xi. Each disk is shaded
according to Ripi, the physical pressure scaled by the �undeformed�
distance from the point force; values increase from blue through
purple and orange to green. Pressures are calculated for the case for
Qm=1, Qd=0.6, Qq=−2.0, k=353, and �=12.4. Two-peaked struc-
ture is apparent, as well as arching in the upper layers. The strains
are large. �b� The deformed � material for Qm=1 /4, Qd=0.12, Qq

=−1.2, k=1415, and �=45.7.
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