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For packings of hard but not perfectly rigid particles, the length scales that govern the packing

geometry and the contact forces are well separated. This separation of length scales is explored in the

force network ensemble, where one studies the space of allowed force configurations for a given, frozen

contact geometry. Here we review results of this approach, which yields nontrivial predictions for the

effect of packing dimension and anisotropy on the contact force distribution P(f), the response to

overall shear and point forcing, all of which can be studied in great numerical detail. Moreover, there

are emerging analytical approaches that very effectively capture, for example, the form of force

distributions.

Force networks are a striking feature of granular media1–5—see

Fig. 1. This organization of the contact forces between individual

grains has fascinated physicists for decades.6–9 Why are these

contact forces interesting? First, the fluctuations of the forces

appear to be unexpectedly strong, with early measurements10,11

and models12 indicating that the probability distribution function

of the contact forces, P(f), is not narrowly distributed about its

mean, but instead decays exponentially at large forces. Second,

the spatial organization of the strong contact forces in so-called

force networks plays an important role in the memory effects

exhibited by granular media.13,14 Third, predicting the mechan-

ical properties of granular assemblies is a central goal of granular

Fig. 1 Illustration of force networks studied in the Force Network

Ensemble. Lines between disks indicate contact forces; larger forces have

thicker lines. For a single ordered (a) or disordered (b) contact network,

many different configurations of noncohesive contact forces, or force

networks, satisfy force balance on every grain. The FNE comprises all

balanced force networks on a fixed contact network.
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theory,15–21 and these stresses ultimately originate from the

contact forces and their organization.

From a microscopic point of view, the contact forces arise

from deformations of the constituent grains. This perspective is

useful when developing a detailed numerical recipe, but theo-

retically unwieldy. Because granular media are highly disordered

the details of the contact geometry play a crucial role, response to

a load is not affine, and macroscopic elasticity cannot be inferred

directly from a microscopic force law.5 Additionally, grain

deformations are typically very small—a steel ball of 1 mm

deforms only by a nanometre under its own weight, and buried

under a pile of beads one meter thick, typical deformations are of

order of 100 nm. This leads to a strong separation of the scale

governing the geometry of the packing and the scale governing

the contact forces.

In this paper we review the Force Network Ensemble (FNE),22

which is a model that relies on the separation of scales relevant

for the contact forces (nanometres) and the particle scale (milli-

metres). The central idea is that, for a given packing geometry,

many different microscopic configurations of noncohesive forces

satisfy force (and possibly torque) balance on each grain, while

also satisfying boundary conditions in terms of the applied

stresses. In other words, the forces can be seen as under-

determined. As a simple example of force indeterminacy, one

may think of the forces acting on a ladder that rests against a wall

under an angle—a range of contact forces is possible to keep the

ladder in balance. This indeterminacy carries over to collections

of grains, as is illustrated in Fig. 1. Both ordered and disordered

packings allow for many different force networks that respect

mechanical equilibrium on each grain. By averaging over all

possible force configurations the FNE provides a model for

statistical properties of force networks. Of course, in a real

physical system, the actual forces are selected by the history and

elasticity of the ladder or particles.

Strictly speaking, this indeterministic point of view only makes

sense in the limit of very hard contacts. A subtle point is then that

for perfectly rigid frictionless spheres, the geometry completely

specifies the forces—frictionless hard spheres in dimension

d organize such that their mean number of contacts z reaches

a well defined limit ziso ¼ 2d, termed isostatic, such that the

number of contact forces and mechanical constraints precisely

balance.23–26 In more modern language, the small relative

deformations of the particles imply that granular media are close

to the ‘‘jamming point’’.5,27–29 Frictionless spheres are isostatic in

this limit. Frictional particles, however, are generally not

isostatic at the jamming point.30–33 The idea of sampling all force

configurations compatible with force balance/torque balance and

boundary conditions is therefore on firmer footing physically in

frictional packings. Having said that, the ensemble is also

mathematically well-defined for frictionless systems, andmany of

the examples discussed below are frictionless.

An additional motivation to study the FNE is somewhat more

abstract. The idea of sampling all possible configurations goes

back to Edwards, who advocated considering ensembles of all

grain configurations consistent with some set of boundary

conditions.34 In general this is hard or impossible to do explicitly.

The FNE can be seen as a restricted Edwards ensemble,17 with an

extensive measure of the stress playing a role analogous to energy

in equilibrium statistical mechanics.35,36 The ensemble then

allows one to explore the consequences of and limits to the

Edwards approach. For example, we will see that one popular

notion, namely that entropy maximization implies robustly

exponential force statistics,37 does not survive confrontation with

the FNE.

The scope of this paper is to review the literature on the FNE

and closely related work.22,32,35,36,38–50 The outline of this paper is

as follows. We first motivate the ensemble in more detail and

quantify the degree of force indeterminacy in Sec. I. Statistical

properties of the ensemble are discussed in Sec. II, with a focus

on the contact force distribution P(f). Section III addresses the

mechanical response to applying an external load, such as

a uniform shear stress or a localized point force. The paper closes

with a discussion on the successes and limitations of the FNE,

where we also point out future directions. Throughout the paper

we confront the ensemble predictions to experimental or

numerical data, when available.
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I. Motivation: force indeterminacy

The FNE crucially relies on force indeterminacy, meaning that

the equations of local force and torque balance do not uniquely

determine the forces. It is therefore instructive to specify it

further. As an example, we consider a rigid ball in a groove with

opening angle 2q and contact forces f ¼ (fn
(1), ft

(1), fn
(2), ft

(2)) (see

Fig. 2). This system illustrates many salient features of indeter-

minacy.5,38,39 By inspection, the weight of the ball "mgẑcan be

supported by purely normal forces f0 ¼ (c, 0, c, 0), where

c ¼ 1

2
mg=sinq. This solution is not unique, however; by adding

normal and tangential forces proportional to df ¼ (– sin q, cos q,

– sin q, cos q), other solutions of the form f + df can be identified.

Indeterminacy carries over to packings of many grains, with

the frictionless triangular lattice being an instructive example.

There each grain participates in z ¼ 6 contacts, so there are z/2

distinct contact forces per grain. As each grain brings d ¼ 2 force

balance constraints, we anticipate (z/2) – d¼ 1 degree of freedom

per grain, i.e. one rearrangement of the forces that respects force

balance, as with the ball in a wedge. This rearrangement, iden-

tified in ref. 40, is called a wheel move (Fig. 2c). The idea is that

by decreasing all six forces that contact a certain grain (black

arrows) while simultaneously increasing the six forces that lie on

a shell around the central grain by the same amount (red arrows),

the total vector force on all grains remains invariant. Note that

one should be careful that all contact forces remain noncohesive.

Wheel moves can be generalized for packings with disorder

and friction.32,40,46 In this case the rearrangements of the forces

generally cease to be localized, as demonstrated in Fig. 2d. Just as

in the frictionless triangular lattice, the number of independent

force rearrangements Nw in a packing of N grains is given by the

excess of force components over force/torque balance

constraints,

Nw ¼ 1

2
Dz df N þOð1Þ (1)

Here Dz¼ z – ziso and df is the number of force components per

contact. The isostatic contact number ziso ¼ 2d (resp. d + 1) and

df ¼ 1 (resp. d) in frictionless (frictional) sphere packings.5 The

correction in eqn (1) depends on details of the boundary condi-

tions.

Ref. 40 and 46 give a prescription for constructing a set of Nw

rearrangements {dfk}. With these in hand, any force network

f ¼ f f!ijg on a given contact network can be expressed by giving

the weight wk on each force rearrangement:

f ¼ f0 þ
XNw

k¼1

wk dfk (2)

f0 is any balanced force network with the appropriate stress

tensor ŝ, i.e. a particular solution. The stress tensor can be

expressed in terms of the microscopic forces via22

sab ¼
1

2V

X

ij

fij;arij;b (3)

Here V is the volume of the contact network and r!ij points

from the center of grain i to the center of grain j.

The force rearrangements {dfk} alter forces in the system

without violating mechanical equilibrium, and are therefore the

mechanism of force fluctuations in the FNE. They can be

employed as Monte Carlo moves to sample the space of force

networks,40,47 which can be achieved by varying the {wk}. It is

important to note that the weights {wk} are strongly constrained

by inequalities. These express the constraints that (i) all normal

forces are noncohesive, i.e. fn $ 0, and (ii) all tangential forces

respect Coulomb’s constraint |ft| # mfn.

As the FNE employs a flat measure, meaning all valid force

networks are given equal statistical weight, all the essential

physics of the FNE is encoded in the geometry of a high-

dimensional space. The geometry, in turn, is determined by force

balance and the positivity and Coulomb constraints. One can

think of each force network as occupying a point in a space with

each weight wk describing an axis. In this space the noncohesive

and Coulomb constraints each describe planar boundaries where

a normal force is zero or a tangential force is fully mobilized,

respectively. These boundaries enclose a convex polytope, which

we call FC and which contains all possible force networks {fk}

on a contact network C.32,35,39

Indeterminacy is intimately connected with the size and shape

of the space of force networks FC. Globally, this space has

dimensionD¼Nw. Locally, the ‘‘size’’ of the space in a particular

direction can be quantified by seeking the largest and smallest

values a particular contact force component can take on, by

varying the {wk} to the extremes ofFC.
39,48 For example, for the

tangential force at contact c, the indeterminacy h is

h
!
f ct
"
¼

!
f ct
"max"

!
f ct
"min

1
2

#!
f ct
"maxþ

!
f ct
"min$ (4)

The denominator serves simply to normalize by a typical force

scale in the packing, hence other choices are possible. McNamara

and Herrmann, who study packings under gravity using Contact

Fig. 2 (a) A rigid ball in a groove5,38,39 can be supported by purely

normal forces at the wall. (b) Introducing tangential, i.e., frictional,

forces allows a range of balanced force configurations. (Adapted from

ref. 5.) (c) Similar rearrangements, called ‘‘wheel moves’’,40 do not change

the net vector force on a grain in the frictionless triangular lattice. (d)

Rearrangements in disordered packings are delocalized. Here, changes to

normal forces (color maps to sign, thickness to magnitude) of a rear-

rangement in a frictional packing; changes to tangential forces not

shown.
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Dynamics (CD) and MD, use the average weight of a grain

hmgi.39 It is apparent from Fig. 2b that force fluctuations have

a rich spatial structure, and indeed ref. 39 finds that h is broadly

distributed and is positively correlated with contacts that carry

large forces. Note that, although there is an upper bound on the

maximum normal force fn (and hence |ft|) in a finite size

packing,40,47 that bound grows with system size. It may therefore

be useful to study the behavior of h in the thermodynamic limit.

Averaging h of eqn (4) over all normal and tangential contact

force components gives a purely geometric global measure of

indeterminacy, related to the volume of FC. As shown in Fig. 3,

several alternative measures display qualitatively similar,

nontrivial dependence on friction coefficient m in frictional

packings generated by CD, which treats perfectly rigid grains.32,48

Indeterminacy must be zero when the system is isostatic, which

generically occurs for m ¼ 0 and m / N.5 For finite m the global

indeterminacy hhi displays a maximum for m z 0.1 due to

a balance between two competing effects.32 Increasing m opens

the Coulomb cone, which increases the volume of FC without

changing its dimension. In contrast, increasing m lowers the

contact number z, and hence D. For a number of numerical

protocols z(m) decreases abruptly around mz 0.1. Thus the force

indeterminacy hhi displays a sharp signature of the packing

structure (Fig. 3).

II. Stress statistics

The statistics of local measures of the stress, such as the force f at

a contact or the pressure p on a grain, provide a fundamental

microscopic characterization of the material’s stress state. The

FNE has turned out to be an ideal model to probe these prob-

ability distributions.

We first provide a brief review of characteristic properties of

the stress statistics of static packings. The second part of this

section addresses theoretical aspects of statistics in the FNE,

followed by a discussion.

A. Characteristic features of P(f)

Let us begin with a numerical characterization of the force

probability density P(f) from Molecular Dynamics (MD) simu-

lations on frictionless systems. Fig. 4 depicts P(f) for a range of

confining pressures P, effectively changing the coordination

number, for both Hookean and Hertzian interactions.47 Several

features stand out. All distributions have (i) a peak near the mean

force hfi, (ii) a nonvanishing weight as f / 0 +, and (iii) a width

comparable to hfi. The latter two properties reflect heterogeneity

in the force network, while it has been suggested that the peak is

symptomatic of the jammed state.51 These three features, the

‘‘look and feel’’ of P(f), are observed in a variety of simulations

and experiments.2,4,10,11,30,51–58 This hints at generic mechanisms

that can be probed within the FNE, in particular since the

qualitative features of P(f) in packings are insensitive to the force

law.

The simplest system to which one can apply the FNE is the

two-dimensional contact network with triangular lattice

symmetry and isotropic stress,22,40,46 as in Fig. 1a. The corre-

sponding P(f) is represented by the dashed curves in Fig. 4.

Indeed, the FNE prediction agrees very well with the results from

Molecular Dynamics simulations and bears the three character-

istic features of P(f). In addition, very similar results were

obtained when numerically sampling FNE for disordered disk

packings with varying average contact numbers ranging from z¼
6 to 4.3.46 Closer approach to the isostatic point ziso ¼ 4, where

the space of allowed force networks vanishes, is numerically

impractical; hence the FNE is not the appropriate tool to probe

P(f) near ziso.

Ref. 40 explores the consequences of stress anisotropy in the

triangular lattice. Anisotropy corresponds to s > 0 when the

principle stresses s1 $ s2 are unequal:

s ¼ s1 " s2

s1 þ s2

(5)

Anisotropy introduces a separate force distribution for each

lattice direction. P(f) for forces aligned with the principal stress

direction broadens and develops a regime of exponential decay

Fig. 3 Dependence of the force indeterminacy h on friction coefficient m

for contact networks equilibrated under Contact Dynamics.48 Several

different measures of force indeterminacy show the same qualitative

evolution with m. h1 is related to the relative fluctuations of contact force

componentswhen valid networks are randomly sampled,whileh2 depends

on themeanEuclidean distance between randomly sampled networks. See

ref. 48 for precise definitions. h3 is given by eqn (4). (inset) The peak in h

corresponds with a sharp decrease in mean contact number z.

Fig. 4 P(f) for Molecular Dynamics simulations of soft spheres in 2D

(solid curves) and the FNE on the frictionless triangular lattice (dashed

curves). f is normalized to hfi. MD grains interact via one-sided (a)

Hookean or (b) Hertzian springs. (insets) MD distributions differ in their

confining pressure P, which tunes the contact number z relative to the

isostatic value ziso¼ 4.P(f) in the FNE shows strong qualitative similarity

to P(f) in MD for both force laws. (Adapted.)
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before crossing over to faster-than-exponential decay (Fig. 5).

The width of this regime grows with increasing s. For sufficiently
strong anisotropy, P(f) averaged over lattice directions loses its

peak near hfi, suggesting the presence of a peak in P(f) is not

a robust signature of the jammed state.35,40 In an ordered packing

in the limit s / 1, force is restricted to one lattice direction, the

system is quasi-one dimensional, and P(f) becomes exactly

exponential.40 A similar exponential regime is observed for

disordered contact networks under shear, before crossing over to

asymptotically Gaussian decay.46

Recently, numerical results for the FNE have been obtained

using umbrella sampling, with which the FNE can be sampled far

more efficiently—and hence P(f) can be determined far more

accurately—than ensembles generated by experiments or

MD.36,46,47 With this accuracy, which permits sampling P(f) over

tens of decades in the tail (Fig. 6a), it has been put beyond any

doubt that P(f) in the FNE decays faster than exponentially. This

is already suggested by Fig. 4, in which P(f) clearly bends

downwards on a semi-log plot. P(f) in the FNE is numerically

determined in ref. 46 to decay as exp(– fb), with the exponent

b dependent on the dimension. Consistent with theoretical

arguments (see below), b¼ 2 for two dimensions (Fig. 6b), i.e. the

tail of P(f) is Gaussian. For higher dimensions P(f) decays as

a compressed exponential (Fig. 6c,d), with b z 1.6(1) in 3D and

bz 1.4(1) in 4D. Numerics show no dependence of b on disorder

for Dz as small as 0.3.46,47 In light of early experiments finding

exponential tails, these results are surprising; we return to this

point below.

To summarize, P(0) > 0 for all frictionless force networks in

the FNE. Though there is often a peak for finite f, it can be

destroyed by strong anisotropy. The force distribution is always

wide and its asymptotic tail is set only by the dimension. Strong

anisotropy, however, can open an intermediate regime of expo-

nential decay.

B. P(f) in theory

Two of the robust features of P(f) identified above are the finite

value of P(f) for vanishing force, and the asymptotic form of its

tail. We will discuss now how, in the FNE, the origins of the

former remain an open question, while the latter follows from

entropy maximization in the presence of an unanticipated

constraint.

It has been suggested that, in the presence of a flat measure, the

finite value of P(f) for vanishing force can be traced to the

geometric properties of the high dimensional space FC.
35 In

frictionless systems, states with a zero contact force sit on one of

the boundary facets ofFC, and high dimensional spaces have the

curious but well known property that the overwhelming majority

of the space is close to the boundary. This fact seems to motivate

the presence of many vanishingly small forces. In preparing this

review, however, it became apparent that this reasoning does not

stand up to closer scrutiny. Simply by dimensional analysis, the

fraction v(df) of the volume of FC within df of the surface must

be vx
Dz

z

df

hf i. If this volume were simply divided among the Nc

contact forces, then P(0) z v(df)/Ncdf would vanish in the

thermodynamic limit. The fact that it does not means that

a typical force network within df of one boundary facet is also

within df of a finite fraction of the other boundary facets.

Precisely how this can be understood, and how, e.g., P(0)

depends on contact number z, is an interesting and open ques-

tion.

We have seen that P(f) in two dimensions has a Gaussian tail

(Fig. 6b). To understand how this comes about, it is instructive to

study a related distribution, namely that of local pressures p. The

grain scale ‘‘pressures’’ pi ¼
P

j(fn)ij are convenient both because

the constraints of force balance enter at the grain scale and

because the pressure is a slightly coarse-grained stress. The form

of the probability distribution P(p) is motivated in ref. 36 by an

entropy maximization argument, the crux of which we sketch

Fig. 5 P(f) in the frictionless triangular lattice subject to a shear stress

displays a quasi-exponential intermediate regime that grows with

increasing anisotropy s. The distribution approaches a pure exponential

(gray curve) in the asymptotic limit s / 1. (Adapted.)

Fig. 6 P(f) from umbrella sampling in the frictionless triangular lattice

(2D), frictionless fcc lattice (3D), and a disordered packing in four

dimensions (4D) with contact number zz 20.9. The dashed box indicates

the plotting range in Fig. 4. (a) log P(f) bends downward when plotted

versus f, indicating faster than exponential decay. If P(f) & exp(– fb) then

f"b log P(f) approaches a constant for large f. We observe (b) b ¼ 2.0(1)

(Gaussian decay) in 2D, (c) b ¼ 1.6(1) in 3D, and (d) b ¼ 1.4(1) in 4D.

(Adapted.)
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here. The argument relies on the observation that force networks

in two dimensions admit a reciprocal representation in which

forces from the network are used to construct tiles that tessellate

space.59 A tile is formed by graphically summing the contact

forces on a grain in a right-hand fashion; Fig. 7 gives an example.

The key observation is that, because stress ŝ and volume V are

both fixed in the FNE, the area of the tiling A ¼ (detŝ)V is also

invariant.36,49,50 This is a collective effect; the tiling only exists

when every grain is in force balance.

For concreteness, consider a frictionless triangular lattice with

isotropic stress and pressure, bs :¼ ð
ffiffiffi
3

p
=6rÞP 1, where r is the

grain radius. Because the stress is fixed, the grain-scale pressures

{pi} obey a sum rule:
X

i

pi ¼ PN (6)

P is therefore the average local pressure. The new observation

is that because there is a tiling and its area is invariant, the local

areas {ai} also obey a sum rule

X

i

ai ¼
ffiffiffi
3

p &
P

6

'2

N (7)

Note that eqn (7) is satisfied automatically when eqn (6) and

force balance on every grain are imposed. In analytical calcula-

tions one typically resorts to treating local force balance

approximately, with the consequence that eqn (7) is violated—

see ref. 50 for a detailed discussion of this point. In this case,

imposing the area sum rule as a constraint reintroduces a neces-

sary consequence of local force balance. The surprise is that by

incorporating this global constraint, instead of the O(N) local

force balance constraints, one can successfully predict stress

statistics in the FNE via an entropy maximization calculation 36.

The resulting distribution of local pressures in the frictionless

triangular lattice is

P(p) ¼ Z"1pne"ap"gha(p)i. (8)

The exponent in the prefactor depends on contact network; n

¼ 3 for the for the frictionless triangular lattice. Z, a, and g are

not free parameters but Lagrange multipliers determined by

normalization of P(p) and eqn (6) and (7). ha(p)i f p2 is the

average area of a tile with corresponding pressure p; it appears

because the area sum rule has been imposed. For asymptotically

large pressures the quadratic term dominates and the tail of P(p)

is Gaussian. For small g, however, the Gaussian form may only

become apparent deep in the tail. Eqn (8) is in excellent agree-

ment with numerics; see Fig. 7d. Though it has not been shown

that a Gaussian tail in P(p) requires a Gaussian tail in P(f), it is

an empirical fact that the tails of P(f) and P(p) always have the

same form. Hence the invariant tiling area presumably also

explains the tail of P(f).

The pressure sum rule, eqn (6), is reminiscent of energy in

a microcanonical ensemble, which also obeys a sum rule. This

similarity has provoked a number of authors to explore parallels

between equilibrium statistical mechanics and stress-based

ensembles of packings, under the assumption that they are also

entropy maximizing, see e.g. ref. 18,60–65. In a statistical

mechanics framework, a natural first step is to consider the

analog of an ideal gas, i.e. completely neglecting correlations

between particles and maximizing entropy in the presence of the

constraint eqn (6). This ‘‘ideal gas approach’’ predicts exponen-

tial tails, and is therefore not adequate to describe statistics of

forces in the FNE. Though the calculation of ref. 36 sketched

above also neglects spatial correlations, by incorporating the

tiling area constraint it retains information that the ideal gas

approach throws out. It is remarkable that including just one

more global constraint, rather than the many local force balance

constraints, so thoroughly captures the numerical distribution

(Fig. 7d). Neglecting spatial correlations is no longer reasonable

in the presence of a diverging length scale near isostaticity,66,67 so

eqn (8) makes no prediction for this case.

Is there a counterpart to the tiling constraint for higher

dimensions? One can indeed construct polyhedra analogous to

the polygonal tiles of Fig. 7,36,68 but whether the sum of their

volumes is conserved remains open. If so, one would have P(f) &
exp(– fb) with b ¼ d/(d " 1). Encouragingly, this is in reasonable

agreement with the results of Fig. 6.

C. Comparison to experiment and simulation

How well do these features conform with P(f) from experimental

or simulated systems? Finite P(0) is indeed a robust feature of

bulk measurements. Similarly, sampled distributions are broad,

and a qualitative change in P(f) has been observed in the only

experiments to systematically vary anisotropy.4 It is less clear if

any general statements can be made about the form of the tail of

P(f) in real granular systems.2,4,10,11,29,30,47,51–58,69–72

The earliest measurements of P(f)—made at the boundary of

packings using the carbon paper method10,11—displayed

Fig. 7 (a) Periodic force network on the frictionless triangular lattice. (b)

Forces on each grain construct a tile (c) by summing them graphically.

Tiles tessellate space due to Newton’s laws. (d) The reciprocal tiling of (a).

(From ref. 50.) (e) The numerical distribution P(p) of the pressure on

a grain in the triangular lattice (solid curve) is well described by eqn (8)

(black dashed curve) but not by a comparable calculation neglecting

conservation of tiling area (gray dashed curve). (Adapted.)
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unambiguously exponential tails. Accompanied by the q-

model,12 which predicts exponentials, these experiments estab-

lished the expectation that P(f) should decay exponentially.

Forces in the bulk are difficult to access experimentally, and there

have been few measurements.4,55,57,58 Those there are raise doubts

regarding the robustness of exponentials; distributions from

isotropic 2D photoelastic systems4 and 3D emulsions57,58 show

downward curvature on a semi-log plot, suggesting faster than

exponential decay. Statistics are limited, however, and it is

difficult to determine the asymptotic form of the tail.

Simulation results are inconsistent.2,29,30,47,51–54,69,70,73 Though

some distributions are clearly exponential,2,69 others display

noticeable curvature on a semi-log plot.47,54,70,73 Few simulations

capture more than three decades in the tail, making it difficult to

distinguish exponentials from broad Gaussians or compressed

exponentials. The tail of P(f) may show signatures of the

approach to isostaticity; this point is not settled, and the FNE,

which vanishes at the isostatic point, provides no illumination.

While data from Zhang and Makse cross over from Gaussian to

exponential decay near unjamming,29 data from Silbert et al.

remain Gaussian even when the distance to the critical packing

fraction fc is as small as 10"6.73 O’Hern et al. find Gaussian tails

in an ensemble at fixed distance to the transition, while fluctua-

tions in this distance due to finite size, which occur in fixed

volume ensembles, can render tails exponential.70

III. Mechanical properties

It is generally thought that force networks are important for the

mechanical properties of static and quasistatic granular mate-

rials. Since the FNE accurately describes the statistics of real

force networks, one could ask whether it also captures mechan-

ical response to external loading. This can indeed be explored

within the FNE. We discuss the response to anisotropic loads

(shear stress) and localized loads (a point force at the boundary).

A. Response to a shear stress

Anisotropic force states as shown in Fig. 5 appear naturally when

imposing a shear stress to the system. It is interesting to study this

effect for disordered packings, for which the anisotropy cannot

be aligned along preferred lattice directions. Fig. 8a illustrates

how the imposed shear stress sxy gives rise to major and minor

principal axes at angles f ¼ p/4 and 3p/4 respectively.42 As

above, we quantify anisotropy by s from eqn (5).

The resulting force anisotropy can be investigated using the

angle resolved PDF, representing P(f) at different orientations f.

Fig. 8b shows results obtained in the FNE for frictionless

packings with isotropic contact networks.42 The modulation

along f increases with the imposed value of s, signaling the

increase of force anisotropy. This is further quantified through

the angle resolved force average, !f (f), which can be expanded in

a Fourier series as in ref. 42,74.

!f (f) ¼ 1 + 2ssin2f " b2cos4f + / (9)

The second order coefficient is directly proportional to s, while
the higher order terms do not couple to the stress at all. Indeed,

eqn (9) already provides an accurate fit to the numerical results

when truncated at fourth order.

Force anisotropy has been observed experimentally 4,75 and in

contact dynamics simulations.74 Fig. 9 shows an experiment on

sheared packings of photoelasic grains, which visualizes the

forces in the system.75 These indeed reveal the preferred orien-

tation of large forces along 45' with respect to the horizontal,

coinciding with the major principal axis.

Another striking feature of Fig. 8b is that many contact forces

along the minor axis evolve towards zero for increasing shear

(black area in Fig. 7b3–b4 near f & 3p/4). These small forces are

close to breaking (they cannot become tensile), which will

eventually lead to failure of the system. Thus there must be

a maximum sm above which no solutions exist. One can interpret

this in terms of the volume spanned by all force configurations,

which continuously shrinks with s and reaches zero at sm. It is
found numerically that sm strongly depends on the coordination

number z, and approximately follows the scaling42

Fig. 8 (a) Shear stress breaks isotropy, introducing a major and minor

principal stress axis. (b) Density plot of the angle-dependent force

distribution Pf(f) for increasing anisotropy s. (c) A strongly anisotropic

force network. Adapted from ref. 42.

Fig. 9 Photoelastic granular packing under shear. The strongest forces

align with the major principal axis. (From ref. 75.)
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smz2
z" ziso

z
(10)

where ziso is the isostatic coordination number. One thus finds

that the maximum possible stress vanishes when the packing

approaches the isostatic limit. This is strongly reminiscent of the

onset of bulk modulus, shear modulus and dynamic yield stress

at the jamming transition.

Far away from the isostatic point, it is possible to apply mean

field arguments to estimate the maximum shear stress in the

FNE.76 This is done by requiring the average force _underf) to

be positive in all directions f. This condition is of course much

weaker than the requirement that all individual forces be posi-

tive, and therefore leads to an upper bound for sm. Generalizing

the argument to frictional particles with friction coefficient m, one

estimates76

sm\
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3m2

p

3
(11)

Simulations of the FNE with z ¼ 5.5 show that this upper

bound is approached to within a few percent for m ¼ 0.5 and

1.0.47

B. Response to a point force

Another way to assess the mechanical behavior is through the

response to a localized force. For small enough forces this probes

the Green’s function of the granular packing and provides crucial

information on the effective continuum description of the

system. Experiments77–79 and simulations31,80,81 have shown that

the spreading of the load inside the material is not universal but

can be along a single broad peak, as is the case for isotropic linear

elastic materials, or more anisotropically along two peaks. The

response is found to depend on parameters such as friction

coefficient, degree of disorder, coordination number and ampli-

tude of applied force.

The response problem was addressed in the FNE for two-

dimensional lattices with a free top surface.41,43 Frictionless

grains were studied on a triangular lattice, while a square lattice

was used for frictional systems. Here we discuss the findings of,43

where the packing was first put under isotropic pressure p before

applying a load f on a grain in the top layer (Fig. 10). Within this

setting it is possible to investigate the effect of the relative force

amplitude, F ¼ f/p, and the friction coefficient m. The response

function G(x, z) is defined by the difference in vertical forceW(x,

z) on a grain with and without the point force:

Gðx; zÞ ¼
(
Wx;z

)
F
"
(
Wx;z

)
0

F
(12)

The brackets with subscripts F and 0 denote the average in the

corresponding FNE.

A linear regime was found for small enough load, F( 3, where

the response is independent of the amplitude F.43 Fig. 10 displays

G(x, z) on the square lattice for various friction coefficients m, all

with F ¼ 3. Each graph contains the response at different

distances to the top surface and reveals how the load spreads

through the material. Clearly, the response evolves from ‘two

peaks’ to ‘one peak’ upon increasing m. This can be interpreted as

follows. In the particular case where m ¼ 0, the response must be

along the two downward lattice directions. For m s 0, the

presence of tangential forces makes it possible to spread the load.

This ‘freedom’ increases with m and eventually yields a single

peaked response, as in isotropic elastic media. These observa-

tions agree well with MD simulations of ordered layers of

grains,80,82 where the grain-grain interactions were modeled in

detail. These simulations showed that friction strongly enhances

the regime where the material behaves like a linear elastic solid.

It is interesting to compare the m ¼ 0 results for the square

lattice (z ¼ 4) and the triangular lattice (z ¼ 6). Though it is

dangerous to extrapolate generic properties of isostatic systems

from lattice packings, it is noteworthy that the response transi-

tions from single-peaked (not shown) to double-peaked as

Fig. 10 (a) Contact network and boundary conditions for point force response. An otherwise isotropic system is augmented by a normal force F at one

boundary. (b) Evolution of the response with depth z changes qualitatively with microscopic friction coefficient m. (Adapted.)
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(z " ziso) / 0+. This is consistent with the emerging picture that

there is a diverging length scale l* & 1/Dz above which a packing

can be viewed as an elastic continuum.67 Anisotropy may also

play a role. The triangular lattice is isotropic in linear elasticity

while the square lattice is not, and anisotropic continua admit

two-peaked response.83,84 Finally, at fixed depth the response

gradually changes to two peaks when increasing F well into the

nonlinear regime, also consistent with continuum descriptions.84

This crossover occurs when the local load W becomes much

larger than the horizontal pressure scale, in which case the

horizontal forces hardly contribute the force balance. Locally,

this effectively changes the lattice from ‘triangular’ to ‘square’,

the latter allowing only for transmission along the lattice direc-

tions—see also ref. 80.

IV. Conclusions and outlook

The FNE is a convenient minimal model system for static

granular materials that takes into account local force balance

explicitly. Due to its simplicity its properties can be computed

accurately.

The FNE reproduces the most robust features of the statistics

of contact forces, suggesting that these features follow from the

geometry of a high-dimensional space, and that details of the

force law are of secondary importance. Perhaps most surprising

is the finding that P(f) in the FNE decays faster than exponen-

tially. It is our impression that consensus has crystallized about

the notion that exponential tails are a hallmark of granular force

fluctuations, motivated by early experimental,10,11 numerical,2

and theoretical12 work. Although there is support for this view, it

seems to outrun the available evidence. The FNE suggests an

alternative perspective; namely that distributions decay faster

than exponentially asymptotically but, due to anisotropy, may

appear exponential over accessible ranges. One useful role for the

FNE is that of litmus test: a model that cannot explain results in

the FNE is too simplistic. On this basis the q-model and ideal

gas-like extrapolations from the Edwards ensemble can already

be rejected. Therefore, if the tail of P(f) in real systems is robustly

exponential, a theoretical explanation is still lacking.

As a statistical measure, P(f) carries no information about the

spatial structure of force networks. Studies of thresholded force

networks offered the intriguing suggestion that systems with

vector force balance represent a different universality class from

ordinary percolation.44,45 More recent work, however, attributes

these observations to crossover effects,85 It is therefore an open

question whether force networks carry diverging spatial signa-

tures of the impending loss of rigidity as the isostatic point is

approached, as do the vibrational66 and response67 properties of

soft sphere packings.

Studies of response hint at a connection between hyperstaticity

of forces and elasticity or continuum-like response in the corre-

sponding soft sphere packing.67 It remains an interesting and

open question whether the stress statistics of eqn (8) break down

near isostaticity.

Important topics for future studies are the nature of force

networks in frictional systems, in systems of non-spherical

particles, and in flowing systems—does the FNE also capture the

statistics of these systems? Finally, one may wonder if the idea of

flatly sampling a family of configurations, which the FNE does

for force configurations, can be extended to other cases, such as

the family of contact geometries that correspond to a certain

contact topology.
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